Suppr超能文献

基于记忆形状的仿攀爬式缠绕电极用于周围神经刺激和记录。

Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording.

机构信息

AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China.

出版信息

Sci Adv. 2019 Apr 19;5(4):eaaw1066. doi: 10.1126/sciadv.aaw1066. eCollection 2019 Apr.

Abstract

Peripheral neuromodulation has been widely used throughout clinical practices and basic neuroscience research. However, the mechanical and geometrical mismatches at current electrode-nerve interfaces and complicated surgical implantation often induce irreversible neural damage, such as axonal degradation. Here, compatible with traditional 2D planar processing, we propose a 3D twining electrode by integrating stretchable mesh serpentine wires onto a flexible shape memory substrate, which has permanent shape reconfigurability (from 2D to 3D), distinct elastic modulus controllability (from ~100 MPa to ~300 kPa), and shape memory recoverability at body temperature. Similar to the climbing process of twining plants, the temporarily flattened 2D stiff twining electrode can naturally self-climb onto nerves driven by 37°C normal saline and form 3D flexible neural interfaces with minimal constraint on the deforming nerves. In vivo animal experiments, including right vagus nerve stimulation for reducing the heart rate and action potential recording of the sciatic nerve, demonstrate the potential clinical utility.

摘要

外周神经调节在临床实践和基础神经科学研究中得到了广泛应用。然而,目前电极-神经界面的机械和几何不匹配以及复杂的手术植入常常导致不可逆转的神经损伤,如轴突退化。在这里,我们提出了一种兼容传统 2D 平面处理的 3D 缠绕电极,通过将可拉伸的网格蛇形线集成到柔性形状记忆基底上,该电极具有永久的形状可重构性(从 2D 到 3D)、明显的弹性模量可控性(从100MPa 到300kPa)以及在体温下的形状记忆恢复性。类似于缠绕植物的攀爬过程,暂时压平的 2D 刚性缠绕电极可以在 37°C 生理盐水的驱动下自然地自行爬上神经,并与变形神经最小约束形成 3D 柔性神经接口。包括右迷走神经刺激以降低心率和坐骨神经动作电位记录在内的动物体内实验证明了其潜在的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c250/6505533/2b550cbb7540/aaw1066-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验