Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain.
Genes (Basel). 2020 Oct 6;11(10):1170. doi: 10.3390/genes11101170.
Circadian rhythms pervade nearly all aspects of plant growth, physiology, and development. Generation of the rhythms relies on an endogenous timing system or circadian clock that generates 24-hour oscillations in multiple rhythmic outputs. At its bases, the plant circadian function relies on dynamic interactive networks of clock components that regulate each other to generate rhythms at specific phases during the day and night. From the initial discovery more than 13 years ago of a parallelism between the oscillations in chromatin status and the transcriptional rhythms of an clock gene, a number of studies have later expanded considerably our view on the circadian epigenome and transcriptome landscapes. Here, we describe the most recent identification of chromatin-related factors that are able to directly interact with clock proteins to shape the transcriptional waveforms of circadian gene expression and clock outputs. We discuss how changes in chromatin marks associate with transcript initiation, elongation, and the rhythms of nascent RNAs, and speculate on future interesting research directions in the field.
昼夜节律几乎渗透到植物生长、生理和发育的各个方面。节律的产生依赖于内源性计时系统或生物钟,它会在多个节律输出中产生 24 小时的振荡。在其基础上,植物的昼夜节律功能依赖于时钟组件的动态交互网络,这些组件相互调节,以在白天和夜间的特定阶段产生节律。从 13 年前首次发现染色质状态的振荡与时钟基因的转录节律之间存在平行关系以来,后来的许多研究极大地扩展了我们对昼夜节律表观基因组和转录组图谱的认识。在这里,我们描述了最近发现的与染色质相关的因子,它们能够直接与时钟蛋白相互作用,从而塑造昼夜基因表达和时钟输出的转录波型。我们讨论了染色质标记的变化如何与转录起始、延伸以及新生 RNA 的节律相关联,并推测了该领域未来有趣的研究方向。