Suppr超能文献

忆阻器阵列中神经信号的多通道并行处理

Multichannel parallel processing of neural signals in memristor arrays.

作者信息

Liu Zhengwu, Tang Jianshi, Gao Bin, Li Xinyi, Yao Peng, Lin Yudeng, Liu Dingkun, Hong Bo, Qian He, Wu Huaqiang

机构信息

Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China.

Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.

出版信息

Sci Adv. 2020 Oct 9;6(41). doi: 10.1126/sciadv.abc4797. Print 2020 Oct.

Abstract

Fully implantable neural interfaces with massive recording channels bring the gospel to patients with motor or speech function loss. As the number of recording channels rapidly increases, conventional complementary metal-oxide semiconductor (CMOS) chips for neural signal processing face severe challenges on parallelism scalability, computational cost, and power consumption. In this work, we propose a previously unexplored approach for parallel processing of multichannel neural signals in memristor arrays, taking advantage of their rich dynamic characteristics. The critical information of neural signal waveform is extracted and encoded in the memristor conductance modulation. A signal segmentation scheme is developed to adapt to device variations. To verify the fidelity of the processed results, seizure prediction is further demonstrated, with high accuracy above 95% and also more than 1000× improvement in power efficiency compared with CMOS counterparts. This work suggests that memristor arrays could be a promising multichannel signal processing module for future implantable neural interfaces.

摘要

具有大量记录通道的完全植入式神经接口为运动或言语功能丧失的患者带来了福音。随着记录通道数量的迅速增加,用于神经信号处理的传统互补金属氧化物半导体(CMOS)芯片在并行可扩展性、计算成本和功耗方面面临严峻挑战。在这项工作中,我们利用忆阻器阵列丰富的动态特性,提出了一种此前未被探索的多通道神经信号并行处理方法。神经信号波形的关键信息在忆阻器电导调制中被提取和编码。开发了一种信号分割方案以适应器件变化。为了验证处理结果的保真度,进一步展示了癫痫发作预测,其准确率高于95%,与CMOS同类产品相比,功率效率提高了1000倍以上。这项工作表明,忆阻器阵列可能是未来植入式神经接口中一种很有前景的多通道信号处理模块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/224e/7546699/415c663054a7/abc4797-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验