Suppr超能文献

仿生神经元电子学。

Bioinspired neuron-like electronics.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

出版信息

Nat Mater. 2019 May;18(5):510-517. doi: 10.1038/s41563-019-0292-9. Epub 2019 Feb 25.

Abstract

As an important application of functional biomaterials, neural probes have contributed substantially to studying the brain. Bioinspired and biomimetic strategies have begun to be applied to the development of neural probes, although these and previous generations of probes have had structural and mechanical dissimilarities from their neuron targets that lead to neuronal loss, neuroinflammatory responses and measurement instabilities. Here, we present a bioinspired design for neural probes-neuron-like electronics (NeuE)-where the key building blocks mimic the subcellular structural features and mechanical properties of neurons. Full three-dimensional mapping of implanted NeuE-brain interfaces highlights the structural indistinguishability and intimate interpenetration of NeuE and neurons. Time-dependent histology and electrophysiology studies further reveal a structurally and functionally stable interface with the neuronal and glial networks shortly following implantation, thus opening opportunities for next-generation brain-machine interfaces. Finally, the NeuE subcellular structural features are shown to facilitate migration of endogenous neural progenitor cells, thus holding promise as an electrically active platform for transplantation-free regenerative medicine.

摘要

作为功能生物材料的重要应用,神经探针在研究大脑方面做出了重要贡献。受生物启发和仿生策略已开始应用于神经探针的开发,尽管这些和以前几代的探针与神经元靶标在结构和机械上存在差异,导致神经元丢失、神经炎症反应和测量不稳定。在这里,我们提出了一种神经探针的仿生设计——类神经元电子(NeuE),其中关键的构建模块模拟了神经元的亚细胞结构特征和机械特性。植入的 NeuE-大脑接口的全三维映射突出了 NeuE 与神经元之间的结构不可区分性和紧密的相互渗透。时变组织学和电生理学研究进一步揭示了在植入后不久与神经元和神经胶质网络具有结构和功能稳定的接口,从而为下一代脑机接口开辟了机会。最后,NeuE 的亚细胞结构特征被证明有利于内源性神经祖细胞的迁移,因此有望成为一种无需移植的再生医学的电活性平台。

相似文献

1
Bioinspired neuron-like electronics.
Nat Mater. 2019 May;18(5):510-517. doi: 10.1038/s41563-019-0292-9. Epub 2019 Feb 25.
2
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10046-E10055. doi: 10.1073/pnas.1717695114. Epub 2017 Nov 6.
3
Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5894-5899. doi: 10.1073/pnas.1705509114. Epub 2017 May 22.
4
Tissue-like Neural Probes for Understanding and Modulating the Brain.
Biochemistry. 2018 Jul 10;57(27):3995-4004. doi: 10.1021/acs.biochem.8b00122. Epub 2018 Mar 19.
5
Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches.
Nano Lett. 2019 May 8;19(5):2741-2749. doi: 10.1021/acs.nanolett.8b04895. Epub 2019 Apr 24.
6
Mesh electronics: a new paradigm for tissue-like brain probes.
Curr Opin Neurobiol. 2018 Jun;50:33-41. doi: 10.1016/j.conb.2017.11.007. Epub 2017 Dec 1.
7
Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology.
J Vis Exp. 2018 Jul 21(137):58003. doi: 10.3791/58003.
8
Bioinspired Materials for Bioelectronic Neural Interfaces.
Matter. 2020 Oct 7;3(4):1087-1113. doi: 10.1016/j.matt.2020.08.002.
10
Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
Neurosurg Focus. 2020 Jul;49(1):E7. doi: 10.3171/2020.4.FOCUS20178.

引用本文的文献

1
Rational assembly of 3D network materials and electronics through tensile buckling.
Sci Adv. 2025 Sep 12;11(37):eadz0718. doi: 10.1126/sciadv.adz0718. Epub 2025 Sep 10.
2
Materials and device strategies to enhance spatiotemporal resolution in bioelectronics.
Nat Rev Mater. 2025 Jun;10(6):425-448. doi: 10.1038/s41578-025-00798-y. Epub 2025 May 1.
4
Tau drives cell specific functional isolation of the hippocampal formation.
bioRxiv. 2025 Aug 11:2025.08.10.669580. doi: 10.1101/2025.08.10.669580.
5
Capturing the Electrical Activity of all Cortical Neurons: Are Solutions Within Reach?
Adv Sci (Weinh). 2025 Aug;12(32):e06225. doi: 10.1002/advs.202506225. Epub 2025 Jun 27.
6
Brain implantation of soft bioelectronics via embryonic development.
Nature. 2025 Jun 11. doi: 10.1038/s41586-025-09106-8.
7
Flexible 3D Kirigami Probes for In Vitro and In Vivo Neural Applications.
Adv Mater. 2025 Jun;37(24):e2418524. doi: 10.1002/adma.202418524. Epub 2025 Apr 14.
8
Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces.
Nat Commun. 2025 Feb 21;16(1):1861. doi: 10.1038/s41467-025-57016-0.
10
A stealthy neural recorder for the study of behaviour in primates.
Nat Biomed Eng. 2024 Nov 8. doi: 10.1038/s41551-024-01280-w.

本文引用的文献

1
Neural Recording and Modulation Technologies.
Nat Rev Mater. 2017 Feb;2(2). doi: 10.1038/natrevmats.2016.93. Epub 2017 Jan 4.
2
Glial responses to implanted electrodes in the brain.
Nat Biomed Eng. 2017 Nov;1(11):862-877. doi: 10.1038/s41551-017-0154-1. Epub 2017 Nov 10.
3
Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology.
J Vis Exp. 2018 Jul 21(137):58003. doi: 10.3791/58003.
4
High-yield in vitro recordings from neurons functionally characterized in vivo.
Nat Protoc. 2018 Jun;13(6):1275-1293. doi: 10.1038/nprot.2018.026. Epub 2018 May 10.
5
Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
Biomaterials. 2018 May;163:163-173. doi: 10.1016/j.biomaterials.2018.02.014. Epub 2018 Feb 13.
6
In vivo migration of endogenous brain progenitor cells guided by an injectable peptide amphiphile biomaterial.
J Tissue Eng Regen Med. 2018 Apr;12(4):e2123-e2133. doi: 10.1002/term.2644. Epub 2018 Feb 27.
7
Fully integrated silicon probes for high-density recording of neural activity.
Nature. 2017 Nov 8;551(7679):232-236. doi: 10.1038/nature24636.
8
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10046-E10055. doi: 10.1073/pnas.1717695114. Epub 2017 Nov 6.
9
Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.
Nano Lett. 2017 Sep 13;17(9):5836-5842. doi: 10.1021/acs.nanolett.7b03081. Epub 2017 Aug 14.
10
Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5894-5899. doi: 10.1073/pnas.1705509114. Epub 2017 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验