Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
Department of Geological Sciences, College of Arts and Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada.
Mol Neurobiol. 2021 Feb;58(2):855-866. doi: 10.1007/s12035-020-02157-0. Epub 2020 Oct 10.
Demyelination and oligodendrocyte loss are characteristic changes in demyelinating disorders. Low-field magnetic stimulation (LFMS) is a novel transcranial neuromodulation technology that has shown promising therapeutic potential for a variety of neuropsychiatric conditions. The cellular and molecular mechanisms of magnetic stimulation remain unclear. Previous studies mainly focused on the effects of magnetic stimulation on neuronal cells. Here we aimed to examine the effects of a gamma frequency LFMS on the glial progenitor cells. We used rat central glia-4 (CG4) cell line as an in vitro model. CG4 is a bipotential glial progenitor cell line that can differentiate into either oligodendrocyte or type 2-astrocyte. The cells cultured in a defined differentiation media were exposed to a 40-Hz LFMS 20 min daily for five consecutive days. We found that LFMS transiently elevated the level of TGF-β1 in the culture media in the first 24 h after the treatment. In correlation with the TGF-β1 levels, the percentage of cells possessing complex branches and expressing the late oligodendrocyte progenitor marker O4 was increased, indicating the accelerated differentiation of CG4 cells towards oligodendrocyte in LFMS-treated cultures. LFMS increased phosphorylation of Akt and Erk1/2 proteins, but not SMAD2/3. TGF-β1 receptor I specific inhibitor LY 364947 partially suppressed the effects of LFMS on differentiation and on levels of pAkt and pErk1/2, indicating that LFMS enhances the differentiation of oligodendrocyte progenitor cells via activation of non-canonical TGF-β-Akt and TGF-β-Erk1/2 pathways but not the canonical SMAD pathway. The data from this study reveal a novel mechanism of magnetic stimulation as a potential therapy for demyelination disorders.
脱髓鞘和少突胶质细胞丢失是脱髓鞘疾病的特征性变化。低频磁场刺激(LFMS)是一种新型的经颅神经调节技术,在多种神经精神疾病中显示出有希望的治疗潜力。磁场刺激的细胞和分子机制尚不清楚。以前的研究主要集中在磁场刺激对神经元细胞的影响上。在这里,我们旨在研究伽马频率 LFMS 对神经胶质前体细胞的影响。我们使用大鼠中枢神经胶质-4(CG4)细胞系作为体外模型。CG4 是一种双潜能神经胶质前体细胞系,可分化为少突胶质细胞或 2 型星形胶质细胞。在确定的分化培养基中培养的细胞每天接受 40-Hz LFMS 20 分钟,连续 5 天。我们发现 LFMS 在治疗后 24 小时内会短暂地提高培养基中 TGF-β1 的水平。与 TGF-β1 水平相关的是,具有复杂分支并表达晚期少突胶质前体细胞标志物 O4 的细胞百分比增加,表明 LFMS 处理培养物中 CG4 细胞向少突胶质细胞的分化加速。LFMS 增加了 Akt 和 Erk1/2 蛋白的磷酸化,但不增加 SMAD2/3。TGF-β1 受体 I 特异性抑制剂 LY 364947 部分抑制了 LFMS 对分化和 pAkt 和 pErk1/2 水平的影响,表明 LFMS 通过激活非经典 TGF-β-Akt 和 TGF-β-Erk1/2 途径而不是经典 SMAD 途径增强少突胶质前体细胞的分化。这项研究的数据揭示了磁场刺激作为脱髓鞘疾病潜在治疗方法的新机制。