Suppr超能文献

利用迁移学习预测研究较少的组织中的抗癌药物协同作用。

Anticancer drug synergy prediction in understudied tissues using transfer learning.

机构信息

Center for Safe Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA.

Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

出版信息

J Am Med Inform Assoc. 2021 Jan 15;28(1):42-51. doi: 10.1093/jamia/ocaa212.

Abstract

OBJECTIVE

Drug combination screening has advantages in identifying cancer treatment options with higher efficacy without degradation in terms of safety. A key challenge is that the accumulated number of observations in in-vitro drug responses varies greatly among different cancer types, where some tissues are more understudied than the others. Thus, we aim to develop a drug synergy prediction model for understudied tissues as a way of overcoming data scarcity problems.

MATERIALS AND METHODS

We collected a comprehensive set of genetic, molecular, phenotypic features for cancer cell lines. We developed a drug synergy prediction model based on multitask deep neural networks to integrate multimodal input and multiple output. We also utilized transfer learning from data-rich tissues to data-poor tissues.

RESULTS

We showed improved accuracy in predicting synergy in both data-rich tissues and understudied tissues. In data-rich tissue, the prediction model accuracy was 0.9577 AUROC for binarized classification task and 174.3 mean squared error for regression task. We observed that an adequate transfer learning strategy significantly increases accuracy in the understudied tissues.

CONCLUSIONS

Our synergy prediction model can be used to rank synergistic drug combinations in understudied tissues and thus help to prioritize future in-vitro experiments. Code is available at https://github.com/yejinjkim/synergy-transfer.

摘要

目的

药物组合筛选在识别具有更高疗效而安全性不降低的癌症治疗方案方面具有优势。一个关键的挑战是,不同癌症类型之间的体外药物反应累积观察数量差异很大,其中一些组织的研究比其他组织更少。因此,我们旨在开发一种针对研究较少组织的药物协同预测模型,以克服数据匮乏问题。

材料与方法

我们收集了一套全面的癌症细胞系的遗传、分子、表型特征。我们开发了一种基于多任务深度神经网络的药物协同预测模型,以整合多模态输入和多个输出。我们还利用从数据丰富的组织到数据匮乏的组织的迁移学习。

结果

我们在数据丰富的组织和研究较少的组织中都显示出了提高协同预测准确性的效果。在数据丰富的组织中,用于二分类任务的预测模型准确性为 0.9577 AUROC,用于回归任务的准确性为 174.3 均方误差。我们观察到,适当的迁移学习策略显著提高了研究较少组织的准确性。

结论

我们的协同预测模型可用于对研究较少的组织中的协同药物组合进行排序,从而有助于确定未来的体外实验优先级。代码可在 https://github.com/yejinjkim/synergy-transfer 上获得。

相似文献

8
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

2
Anticancer drug synergy prediction based on CatBoost.基于CatBoost的抗癌药物协同作用预测
PeerJ Comput Sci. 2025 May 19;11:e2829. doi: 10.7717/peerj-cs.2829. eCollection 2025.
8
Transformers and large language models in healthcare: A review.医疗保健中的变压器和大型语言模型:综述。
Artif Intell Med. 2024 Aug;154:102900. doi: 10.1016/j.artmed.2024.102900. Epub 2024 Jun 5.
10
Prediction of COVID-19 Patients' Emergency Room Revisit using Multi-Source Transfer Learning.基于多源迁移学习的新冠肺炎患者急诊复诊预测
Proc (IEEE Int Conf Healthc Inform). 2023 Jun;2023:138-144. doi: 10.1109/ICHI57859.2023.00028. Epub 2023 Dec 11.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验