School of Information Engineering, Huzhou University, Huzhou 313000, China.
College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Biomolecules. 2024 Aug 22;14(8):1039. doi: 10.3390/biom14081039.
Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects and has widely been used in clinical practice. However, with the rapid increase in the types of drug combinations, identifying the synergistic relationships between drugs remains a highly challenging task. This paper proposes a novel deep learning model MMFSyn based on multimodal drug data combined with cell line features. Firstly, to ensure the full expression of drug molecular features, multiple modalities of drugs, including Morgan fingerprints, atom sequences, molecular diagrams, and atomic point cloud data, are extracted using SMILES. Secondly, for different modal data, a Bi-LSTM, gMLP, multi-head attention mechanism, and multi-scale GCNs are comprehensively applied to extract the drug feature. Then, it selects appropriate omics features from gene expression and mutation omics data of cancer cell lines to construct cancer cell line features. Finally, these features are combined to predict the synergistic anti-cancer drug combination effect. The experimental results verify that MMFSyn has significant advantages in performance compared to other popular methods, with a root mean square error of 13.33 and a Pearson correlation coefficient of 0.81, which indicates that MMFSyn can better capture the complex relationship between multimodal drug combinations and omics data, thereby improving the synergistic drug combination prediction.
联合治疗旨在协同增强疗效或降低毒副作用,并已广泛应用于临床实践。然而,随着药物组合类型的快速增加,识别药物之间的协同关系仍然是一项极具挑战性的任务。本文提出了一种新的基于多模态药物数据与细胞系特征相结合的深度学习模型 MMFSyn。首先,为了确保药物分子特征的充分表达,使用 SMILES 提取了多种药物模态,包括 Morgan 指纹、原子序列、分子图和原子点云数据。其次,对于不同模态的数据,综合应用 Bi-LSTM、gMLP、多头注意力机制和多尺度 GCN 来提取药物特征。然后,从癌症细胞系的基因表达和突变组学数据中选择合适的组学特征来构建癌症细胞系特征。最后,将这些特征结合起来预测协同抗癌药物组合的效果。实验结果验证了 MMFSyn 在性能方面相对于其他流行方法具有显著优势,均方根误差为 13.33,皮尔逊相关系数为 0.81,这表明 MMFSyn 可以更好地捕捉多模态药物组合与组学数据之间的复杂关系,从而提高协同药物组合的预测效果。