Suppr超能文献

模拟燃烧热核等离子体。

Modelling burning thermonuclear plasma.

作者信息

Rose S J, Hatfield P W, Scott R H H

机构信息

Blackett Laboratory, Imperial College, London SW7 2AZ, UK.

Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Nov 13;378(2184):20200014. doi: 10.1098/rsta.2020.0014. Epub 2020 Oct 12.

Abstract

Considerable progress towards the achievement of thermonuclear burn using inertial confinement fusion has been achieved at the National Ignition Facility in the USA in the last few years. Other drivers, such as the Z-machine at Sandia, are also making progress towards this goal. A burning thermonuclear plasma would provide a unique and extreme plasma environment; in this paper we discuss (a) different theoretical challenges involved in modelling burning plasmas not currently considered, (b) the use of novel machine learning-based methods that might help large facilities reach ignition, and (c) the connections that a burning plasma might have to fundamental physics, including quantum electrodynamics studies, and the replication and exploration of conditions that last occurred in the first few minutes after the Big Bang. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

摘要

过去几年间,美国国家点火装置在利用惯性约束聚变实现热核燃烧方面取得了重大进展。其他驱动装置,如桑迪亚国家实验室的Z机器,也在朝着这一目标迈进。燃烧的热核等离子体将提供一个独特且极端的等离子体环境;在本文中,我们将讨论:(a)目前未被考虑的燃烧等离子体建模中涉及的不同理论挑战;(b)使用基于机器学习的新方法,这些方法可能有助于大型设施实现点火;(c)燃烧等离子体与基础物理学之间的联系,包括量子电动力学研究,以及对大爆炸后最初几分钟内出现的条件的复制和探索。本文是一次讨论会特刊“高增益惯性聚变能源的前景(第一部分)”的一部分。

相似文献

1
Modelling burning thermonuclear plasma.模拟燃烧热核等离子体。
Philos Trans A Math Phys Eng Sci. 2020 Nov 13;378(2184):20200014. doi: 10.1098/rsta.2020.0014. Epub 2020 Oct 12.
3
Direct-drive laser fusion: status, plans and future.直接驱动激光核聚变:现状、计划与未来。
Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200011. doi: 10.1098/rsta.2020.0011. Epub 2020 Dec 7.
5
Progress and opportunities for inertial fusion energy in Europe.欧洲惯性聚变能源的进展与机遇。
Philos Trans A Math Phys Eng Sci. 2020 Nov 13;378(2184):20200013. doi: 10.1098/rsta.2020.0013. Epub 2020 Oct 12.
6
Prospects for high gain inertial fusion energy: an introduction to the second edition.高增益惯性聚变能源的前景:第二版引言
Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200028. doi: 10.1098/rsta.2020.0028. Epub 2020 Dec 7.
7
Burning plasma achieved in inertial fusion.惯性聚变中实现的燃烧等离子体。
Nature. 2022 Jan;601(7894):542-548. doi: 10.1038/s41586-021-04281-w. Epub 2022 Jan 26.
8
Prospects for high gain inertial fusion energy: an introduction to the first special edition.高增益惯性聚变能源的前景:首个特刊介绍
Philos Trans A Math Phys Eng Sci. 2020 Nov 13;378(2184):20200006. doi: 10.1098/rsta.2020.0006. Epub 2020 Oct 12.
9
Preparations for a European R&D roadmap for an inertial fusion demo reactor.惯性聚变示范堆的欧洲研发路线图的准备工作。
Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200005. doi: 10.1098/rsta.2020.0005. Epub 2020 Dec 7.

引用本文的文献

1
Prospects for high gain inertial fusion energy: an introduction to the second edition.高增益惯性聚变能源的前景:第二版引言
Philos Trans A Math Phys Eng Sci. 2021 Jan 25;379(2189):20200028. doi: 10.1098/rsta.2020.0028. Epub 2020 Dec 7.
2
Prospects for high gain inertial fusion energy: an introduction to the first special edition.高增益惯性聚变能源的前景:首个特刊介绍
Philos Trans A Math Phys Eng Sci. 2020 Nov 13;378(2184):20200006. doi: 10.1098/rsta.2020.0006. Epub 2020 Oct 12.

本文引用的文献

3
Transport coefficients of a relativistic plasma.相对论性等离子体的输运系数。
Phys Rev E. 2016 May;93(5):053208. doi: 10.1103/PhysRevE.93.053208. Epub 2016 May 24.
5
Observations of the effect of ionization-potential depression in hot dense plasma.观察热密等离子体中电离势降低的影响。
Phys Rev Lett. 2013 Jun 28;110(26):265003. doi: 10.1103/PhysRevLett.110.265003. Epub 2013 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验