Suppr超能文献

基于全球评分量表的众包和主治医生评估普通外科住院医师手术操作表现。

Crowd-Sourced and Attending Assessment of General Surgery Resident Operative Performance Using Global Ratings Scales.

机构信息

Virginia Mason Medical Center, Seattle, Washington.

Brigham and Women's Hospital, Boston, Massachusetts.

出版信息

J Surg Educ. 2020 Nov-Dec;77(6):e214-e219. doi: 10.1016/j.jsurg.2020.07.011. Epub 2020 Oct 8.

Abstract

OBJECTIVE

We sought to assess the extent to which both crowd and intraoperative attending ratings using objective structured assessment of technical skill (OSATS) or global objective assessment of laparoscopic skills (GOALS) would correlate with the system for improving procedural learning (SIMPL) Zwisch and Performance scales.

DESIGN

Comparison of directly observed versus crowd sourced review of operative video.

SETTING

Operative video captured at 2 institutions.

PARTICIPANTS

Six (6) core general surgery procedures, 3 open and 3 laparoscopic, were selected from the American Board of Surgery's Resident Assessments list. Thirty-two cases performed by General Surgery residents across all training levels at 2 institutions were filmed. Videos were condensed using a standardized protocol to include the critical portion of the procedure.  Condensed videos were then submitted to crowd-sourced assessment of technical skills (C-SATS), an online crowd source-driven assessment service, for assessment using the appropriate resident assessment form (GOALS or OSATS) as well as with the SIMPL Zwisch and Performance scales. Crowd workers watched an educational tutorial on how to use the Zwisch and SIMPL Performance rating scales prior to participating. Attendings scored residents using the same tools immediately after the shared operative experience. Statistical analysis was performed using Pearson's correlation coefficient.

RESULTS

Crowd raters evaluated 32 procedures using GOALS/OSATS, Zwisch and Performance (35-50 ratings per video). Attendings also evaluated all 32 procedures using GOALS/OSATS and 26 of the procedures using SIMPL Zwisch and Performance. Pearson correlation coefficients with 95% confidence intervals for crowd ratings were: GOALS and Zwisch -0.40 [-0.73 to 0.10], OSATS and Zwisch 0.11 [-0.41 to 0.57], GOALS and Performance -0.06 [-0.44 to 0.35], and OSATS and Performance 0.22 [-0.46 to 0.20]. Pearson correlation coefficients for attendings were: GOALS and Zwisch (0.77), OSATS and Zwisch (0.65), GOALS and Performance (0.93), and OSATS and Performance (0.59).

CONCLUSIONS

Overall, correlations between crowd-sourced ratings using GOALS/OSATS and SIMPL global operative performance ratings tools were weak, yet for attendings, they were strong. Direct attending assessment may be required for evaluation of global performance while crowd sourcing may be more suitable for technical assessment.  Further studies are needed to see if more extensive crowd training would result in improved ability for global performance evaluation.

摘要

目的

我们旨在评估使用客观结构化手术技能评估(OSATS)或腹腔镜技能全球客观评估(GOALS)的人群和术中主治医生评分与改善手术学习系统(SIMPL)Zwisch 和绩效评分的相关性。

设计

直接观察与人群来源的手术视频回顾比较。

设置

在 2 个机构捕获手术视频。

参与者

从美国外科委员会住院医师评估清单中选择了 6 项(6)项核心普通外科手术,3 项开放手术和 3 项腹腔镜手术。在 2 个机构的所有培训水平的普外科住院医师中拍摄了 32 例病例。使用标准化协议对视频进行压缩,包括手术过程的关键部分。然后将浓缩视频提交给人群驱动的技术技能评估(C-SATS),这是一个在线人群源驱动的评估服务,使用适当的住院医师评估表(GOALS 或 OSATS)以及 SIMPL Zwisch 和性能量表进行评估。人群工作人员在参与之前观看了有关如何使用 Zwisch 和 SIMPL 性能评分量表的教育教程。主治医生在共享手术经验后立即使用相同的工具对住院医师进行评分。使用 Pearson 相关系数进行统计分析。

结果

人群评估员使用 GOALS/OSATS、Zwisch 和 Performance(每个视频 35-50 次评分)评估了 32 个程序。主治医生还使用 GOALS/OSATS 评估了所有 32 个程序,使用 SIMPLZwisch 和 Performance 评估了 26 个程序。人群评分的 Pearson 相关系数及其 95%置信区间为:GOALS 和 Zwisch-0.40[-0.73 至 0.10],OSATS 和 Zwisch0.11[-0.41 至 0.57],GOALS 和 Performance-0.06[-0.44 至 0.35],OSATS 和 Performance0.22[-0.46 至 0.20]。主治医生的 Pearson 相关系数为:GOALS 和 Zwisch(0.77),OSATS 和 Zwisch(0.65),GOALS 和 Performance(0.93),OSATS 和 Performance(0.59)。

结论

总体而言,使用 GOALS/OSATS 和 SIMPL 全球手术绩效评估工具的人群评分之间的相关性较弱,但对于主治医生来说,相关性很强。直接主治医生评估可能需要用于评估全球绩效,而人群来源可能更适合技术评估。需要进一步研究,以了解更广泛的人群培训是否会提高全球绩效评估能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验