Suppr超能文献

用于纳米级制造的胶体颗粒数字组装

Digital Assembly of Colloidal Particles for Nanoscale Manufacturing.

作者信息

Kotnala Abhay, Zheng Yuebing

机构信息

Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712.

出版信息

Part Part Syst Charact. 2019 Aug;36(8). doi: 10.1002/ppsc.201900152. Epub 2019 Jul 25.

Abstract

From unravelling the most fundamental phenomena to enabling applications that impact our everyday lives, the nanoscale world holds great promise for science, technology and medicine. However, the extent of its practical realization would rely on manufacturing at the nanoscale. Among the various nanomanufacturing approaches being investigated, the bottom-up approach involving assembly of colloidal nanoparticles as building blocks is promising. Compared to a top-down lithographic approach, particle assembly exhibits advantages such as smaller feature size, finer control of chemical composition, less defects, lower material wastage, and higher scalability. The capability to assemble colloidal particles one by one or "digitally" has been heavily sought as it mimics the natural way of making matter and enables construction of nanomaterials with sophisticated architectures. This progress report provides an insight into the tools and techniques for digital assembly of particles, including their working mechanisms and demonstrated particle assemblies. Examples of nanomaterials and nanodevices are presented to demonstrate the strength of digital assembly in nanomanufacturing.

摘要

从揭示最基本的现象到实现影响我们日常生活的应用,纳米尺度的世界在科学、技术和医学领域有着巨大的前景。然而,其实际实现的程度将依赖于纳米尺度的制造。在正在研究的各种纳米制造方法中,涉及将胶体纳米粒子作为构建单元进行组装的自下而上方法很有前景。与自上而下的光刻方法相比,粒子组装具有诸如更小的特征尺寸、对化学成分更精细的控制、更少的缺陷、更低的材料浪费以及更高的可扩展性等优点。逐个或“数字化”组装胶体粒子的能力一直备受追捧,因为它模仿了制造物质的自然方式,并能够构建具有复杂结构的纳米材料。本进展报告深入介绍了粒子数字化组装的工具和技术,包括它们的工作机制以及已展示的粒子组装。还展示了纳米材料和纳米器件的实例,以证明数字化组装在纳米制造中的优势。

相似文献

1
Digital Assembly of Colloidal Particles for Nanoscale Manufacturing.
Part Part Syst Charact. 2019 Aug;36(8). doi: 10.1002/ppsc.201900152. Epub 2019 Jul 25.
2
Optothermal Manipulations of Colloidal Particles and Living Cells.
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
3
Opto-Thermophoretic Tweezers and Assembly.
J Micro Nanomanuf. 2018 Dec;6(4):0408011-4080110. doi: 10.1115/1.4041615. Epub 2018 Oct 18.
4
Optothermally Assembled Nanostructures.
Acc Mater Res. 2021 May 28;2(5):352-363. doi: 10.1021/accountsmr.1c00033. Epub 2021 Apr 2.
5
Opto-thermophoretic fiber tweezers.
Nanophotonics. 2019 Mar;8(3):475-485. doi: 10.1515/nanoph-2018-0226. Epub 2019 Feb 12.
6
Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels.
ACS Appl Nano Mater. 2018 Aug 24;1(8):3998-4004. doi: 10.1021/acsanm.8b00766. Epub 2018 Jul 11.
7
Opto-thermophoretic assembly of colloidal matter.
Sci Adv. 2017 Sep 8;3(9):e1700458. doi: 10.1126/sciadv.1700458. eCollection 2017 Sep.
8
Interfacial Colloidal Self-Assembly for Functional Materials.
Acc Chem Res. 2023 Apr 4;56(7):740-751. doi: 10.1021/acs.accounts.2c00705. Epub 2023 Mar 15.
9
Atomistic modeling and rational design of optothermal tweezers for targeted applications.
Nano Res. 2021 Jan;14(1):295-303. doi: 10.1007/s12274-020-3087-z. Epub 2020 Oct 1.
10
Opto-thermoelectric speckle tweezers.
Nanophotonics. 2020 Apr;9(4):927-933. doi: 10.1515/nanoph-2019-0530. Epub 2020 Mar 7.

引用本文的文献

1
Microswimmers That Flex: Advancing Microswimmers with Templated Assembly and Responsive DNA Nanostructures.
Acc Mater Res. 2025 Jul 14;6(8):927-938. doi: 10.1021/accountsmr.5c00009. eCollection 2025 Aug 22.
2
Opto-Thermoelectric Tweezers: Principles and Applications.
Front Phys. 2020;8. doi: 10.3389/fphy.2020.580014. Epub 2020 Oct 6.
3
Self-Assembly of Atomically Precise Nanoclusters: From Irregular Assembly to Crystalline Assembly.
Nanomaterials (Basel). 2023 Sep 13;13(18):2551. doi: 10.3390/nano13182551.
4
Heat-Mediated Optical Manipulation.
Chem Rev. 2022 Feb 9;122(3):3122-3179. doi: 10.1021/acs.chemrev.1c00626. Epub 2021 Nov 19.

本文引用的文献

1
Opto-Thermophoretic Tweezers and Assembly.
J Micro Nanomanuf. 2018 Dec;6(4):0408011-4080110. doi: 10.1115/1.4041615. Epub 2018 Oct 18.
2
Opto-thermophoretic fiber tweezers.
Nanophotonics. 2019 Mar;8(3):475-485. doi: 10.1515/nanoph-2018-0226. Epub 2019 Feb 12.
3
All-optical reconfigurable chiral meta-molecules.
Mater Today (Kidlington). 2019 May;25:10-20. doi: 10.1016/j.mattod.2019.02.015. Epub 2019 Mar 9.
4
Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels.
ACS Appl Nano Mater. 2018 Aug 24;1(8):3998-4004. doi: 10.1021/acsanm.8b00766. Epub 2018 Jul 11.
5
Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation.
ACS Nano. 2018 Oct 23;12(10):10383-10392. doi: 10.1021/acsnano.8b05824. Epub 2018 Sep 27.
6
Opto-thermoelectric nanotweezers.
Nat Photonics. 2018 Apr;12(4):195-201. doi: 10.1038/s41566-018-0134-3. Epub 2018 Mar 26.
7
Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds.
ACS Nano. 2018 Mar 27;12(3):2440-2447. doi: 10.1021/acsnano.7b07914. Epub 2018 Feb 8.
8
Surface self-assembly of colloidal crystals for micro- and nano-patterning.
Adv Colloid Interface Sci. 2018 Jan;251:97-114. doi: 10.1016/j.cis.2017.10.007. Epub 2017 Nov 8.
9
Opto-thermophoretic assembly of colloidal matter.
Sci Adv. 2017 Sep 8;3(9):e1700458. doi: 10.1126/sciadv.1700458. eCollection 2017 Sep.
10
Interfacial-entropy-driven thermophoretic tweezers.
Lab Chip. 2017 Sep 12;17(18):3061-3070. doi: 10.1039/c7lc00432j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验