Suppr超能文献

基于智能手机的数字表型研究的样本量和随访时间的确定。

Determining sample size and length of follow-up for smartphone-based digital phenotyping studies.

机构信息

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2020 Dec 9;27(12):1844-1849. doi: 10.1093/jamia/ocaa201.

Abstract

OBJECTIVE

Studies that use patient smartphones to collect ecological momentary assessment and sensor data, an approach frequently referred to as digital phenotyping, have increased in popularity in recent years. There is a lack of formal guidelines for the design of new digital phenotyping studies so that they are powered to detect both population-level longitudinal associations as well as individual-level change points in multivariate time series. In particular, determining the appropriate balance of sample size relative to the targeted duration of follow-up is a challenge.

MATERIALS AND METHODS

We used data from 2 prior smartphone-based digital phenotyping studies to provide reasonable ranges of effect size and parameters. We considered likelihood ratio tests for generalized linear mixed models as well as for change point detection of individual-level multivariate time series.

RESULTS

We propose a joint procedure for sequentially calculating first an appropriate length of follow-up and then a necessary minimum sample size required to provide adequate power. In addition, we developed an accompanying accessible sample size and power calculator.

DISCUSSION

The 2-parameter problem of identifying both an appropriate sample size and duration of follow-up for a longitudinal study requires the simultaneous consideration of 2 analysis methods during study design.

CONCLUSION

The temporally dense longitudinal data collected by digital phenotyping studies may warrant a variety of applicable analysis choices. Our use of generalized linear mixed models as well as change point detection to guide sample size and study duration calculations provide a tool to effectively power new digital phenotyping studies.

摘要

目的

近年来,使用患者智能手机收集生态瞬时评估和传感器数据的研究(通常称为数字表型)越来越受欢迎。由于缺乏新的数字表型研究设计的正式指南,因此它们的功能不仅能够检测到人群水平的纵向关联,还能够检测到多元时间序列中的个体水平变化点。特别是,确定相对于目标随访时间的适当样本量平衡是一项挑战。

材料和方法

我们使用了来自之前两项基于智能手机的数字表型研究的数据,以提供合理的效应大小和参数范围。我们考虑了广义线性混合模型的似然比检验,以及个体水平多元时间序列的变化点检测。

结果

我们提出了一种联合程序,首先计算适当的随访时间,然后计算提供足够功率所需的最小必要样本量。此外,我们还开发了一个配套的可访问样本量和功率计算器。

讨论

确定纵向研究适当的样本量和随访时间的 2 参数问题需要在研究设计过程中同时考虑 2 种分析方法。

结论

数字表型研究中收集的时间密集型纵向数据可能需要各种适用的分析选择。我们使用广义线性混合模型以及变化点检测来指导样本量和研究持续时间的计算,为有效为新的数字表型研究提供了工具。

相似文献

8
Anomaly detection to predict relapse risk in schizophrenia.异常检测预测精神分裂症复发风险。
Transl Psychiatry. 2021 Jan 11;11(1):28. doi: 10.1038/s41398-020-01123-7.

引用本文的文献

本文引用的文献

3
Opportunities and needs in digital phenotyping.数字表型分析中的机遇与需求。
Neuropsychopharmacology. 2018 Jul;43(8):1637-1638. doi: 10.1038/s41386-018-0051-7. Epub 2018 Apr 3.
4
Relapse prediction in schizophrenia through digital phenotyping: a pilot study.精神分裂症的数字化表型预测复发:一项试点研究。
Neuropsychopharmacology. 2018 Jul;43(8):1660-1666. doi: 10.1038/s41386-018-0030-z. Epub 2018 Feb 22.
5
Sample size considerations for n-of-1 trials.单病例随机对照试验的样本量考虑。
Stat Methods Med Res. 2019 Feb;28(2):372-383. doi: 10.1177/0962280217726801. Epub 2017 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验