Suppr超能文献

广义线性混合模型实用指南及功效分析:检测随机效应中的处理间差异

A practical guide and power analysis for GLMMs: detecting among treatment variation in random effects.

作者信息

Kain Morgan P, Bolker Ben M, McCoy Michael W

机构信息

Department of Biology, East Carolina University , Greenville, NC , USA.

Departments of Mathematics & Statistics and Biology, McMaster University , Hamilton, ON , Canada.

出版信息

PeerJ. 2015 Sep 17;3:e1226. doi: 10.7717/peerj.1226. eCollection 2015.

Abstract

In ecology and evolution generalized linear mixed models (GLMMs) are becoming increasingly used to test for differences in variation by treatment at multiple hierarchical levels. Yet, the specific sampling schemes that optimize the power of an experiment to detect differences in random effects by treatment/group remain unknown. In this paper we develop a blueprint for conducting power analyses for GLMMs focusing on detecting differences in variance by treatment. We present parameterization and power analyses for random-intercepts and random-slopes GLMMs because of their generality as focal parameters for most applications and because of their immediate applicability to emerging questions in the field of behavioral ecology. We focus on the extreme case of hierarchically structured binomial data, though the framework presented here generalizes easily to any error distribution model. First, we determine the optimal ratio of individuals to repeated measures within individuals that maximizes power to detect differences by treatment in among-individual variation in intercept, among-individual variation in slope, and within-individual variation in intercept. Second, we explore how power to detect differences in target variance parameters is affected by total variation. Our results indicate heterogeneity in power across ratios of individuals to repeated measures with an optimal ratio determined by both the target variance parameter and total sample size. Additionally, power to detect each variance parameter was low overall (in most cases >1,000 total observations per treatment needed to achieve 80% power) and decreased with increasing variance in non-target random effects. With growing interest in variance as the parameter of inquiry, these power analyses provide a crucial component for designing experiments focused on detecting differences in variance. We hope to inspire novel experimental designs in ecology and evolution investigating the causes and implications of individual-level phenotypic variance, such as the adaptive significance of within-individual variation.

摘要

在生态学和进化领域,广义线性混合模型(GLMMs)越来越多地用于检验多个层次水平上不同处理间的变异差异。然而,能优化实验功效以检测不同处理/组间随机效应差异的具体抽样方案仍不为人知。在本文中,我们制定了一个针对GLMMs进行功效分析的蓝图,重点是检测不同处理间的方差差异。我们给出了随机截距和随机斜率GLMMs的参数化及功效分析,这是因为它们具有普遍性,是大多数应用中的焦点参数,也因为它们能直接应用于行为生态学领域中出现的问题。我们聚焦于分层结构二项数据的极端情况,尽管这里给出的框架可轻松推广到任何误差分布模型。首先,我们确定个体内个体与重复测量的最优比例,该比例能最大化检测处理在个体间截距变异、个体间斜率变异以及个体内截距变异方面差异的功效。其次,我们探究检测目标方差参数差异的功效如何受总变异影响。我们的结果表明,个体与重复测量比例的功效存在异质性,最优比例由目标方差参数和总样本量共同决定。此外,检测每个方差参数的功效总体较低(在大多数情况下,每种处理需要>1000个总观测值才能达到80%的功效),并且随着非目标随机效应方差的增加而降低。随着对方差作为研究参数的兴趣日益浓厚,这些功效分析为设计专注于检测方差差异的实验提供了关键要素。我们希望能激发生态学和进化领域新颖的实验设计,以研究个体水平表型方差的成因及影响,比如个体内变异的适应性意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586d/4579019/e9ee75c03bfe/peerj-03-1226-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验