Suppr超能文献

高脂肪高糖饮食损害雄性小鼠空间工作记忆的昼夜节律差异。

High-Fat and High-Sucrose Diets Impair Time-of-Day Differences in Spatial Working Memory of Male Mice.

机构信息

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Department of Neuroscience, Southern Research, Birmingham, Alabama, USA.

出版信息

Obesity (Silver Spring). 2020 Dec;28(12):2347-2356. doi: 10.1002/oby.22983. Epub 2020 Oct 11.

Abstract

OBJECTIVE

This study aimed to investigate both the long-term and short-term impacts of high-fat diets (HFD) or high-sucrose diets (HSD) on the normal diurnal pattern of cognitive function, protein expression, and the molecular clock in mice.

METHODS

This study used both 6-month and 4-week feeding strategies by providing male C57BL/6J mice access to either a standard chow, HFD, or HSD. Spatial working memory and synaptic plasticity were assessed both day and night, and hippocampal tissue was measured for changes in NMDA and AMPA receptor subunits (GluN2B, GluA1), as well as molecular clock gene expression.

RESULTS

HFD and HSD both disrupted normal day/night fluctuations in spatial working memory and synaptic plasticity. Mice fed HFD altered their food intake to consume more calories during the day. Both diets disrupted normal hippocampal clock gene expression, and HFD reduced GluN2B levels in hippocampal tissue.

CONCLUSIONS

Taken together, these results suggest that both HFD and HSD induce a loss of day/night performance in spatial working memory and synaptic plasticity as well as trigger a cascade of changes that include disruption to the hippocampal molecular clock.

摘要

目的

本研究旨在探究高脂肪饮食(HFD)或高蔗糖饮食(HSD)对正常昼夜节律认知功能、蛋白表达和分子钟的长期和短期影响。

方法

本研究采用 6 个月和 4 周的喂养策略,让雄性 C57BL/6J 小鼠分别摄入标准食物、HFD 或 HSD。分别在白天和晚上评估空间工作记忆和突触可塑性,并测量海马组织中 NMDA 和 AMPA 受体亚基(GluN2B、GluA1)以及分子钟基因表达的变化。

结果

HFD 和 HSD 均破坏了空间工作记忆和突触可塑性的正常昼夜波动。喂食 HFD 的小鼠改变了它们的进食习惯,在白天摄入更多的热量。两种饮食均破坏了正常的海马时钟基因表达,HFD 降低了海马组织中 GluN2B 水平。

结论

综上所述,这些结果表明,HFD 和 HSD 均可导致空间工作记忆和突触可塑性的昼夜表现丧失,并引发一系列变化,包括破坏海马分子钟。

相似文献

1
High-Fat and High-Sucrose Diets Impair Time-of-Day Differences in Spatial Working Memory of Male Mice.
Obesity (Silver Spring). 2020 Dec;28(12):2347-2356. doi: 10.1002/oby.22983. Epub 2020 Oct 11.
2
Relationships between diet-related changes in the gut microbiome and cognitive flexibility.
Neuroscience. 2015 Aug 6;300:128-40. doi: 10.1016/j.neuroscience.2015.05.016. Epub 2015 May 14.
3
Impairment of Long-term Memory by a Short-term High-fat Diet via Hippocampal Oxidative Stress and Alterations in Synaptic Plasticity.
Neuroscience. 2020 Jan 1;424:24-33. doi: 10.1016/j.neuroscience.2019.10.050. Epub 2019 Nov 9.
6
Different expressions of clock genes in fatty liver induced by high-sucrose and high-fat diets.
Chronobiol Int. 2021 May;38(5):762-778. doi: 10.1080/07420528.2021.1889579. Epub 2021 Feb 22.
7
Impact of high sucrose diets on the discrimination of spatial and object memories with overlapping features.
Physiol Behav. 2018 Aug 1;192:127-133. doi: 10.1016/j.physbeh.2018.02.027. Epub 2018 Feb 16.
8
Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.
Neurosci Lett. 2016 Aug 3;627:185-91. doi: 10.1016/j.neulet.2016.05.014. Epub 2016 May 10.

引用本文的文献

1
Light-phase time-restricted feeding disrupts the muscle clock and insulin sensitivity yet potentially induces muscle fiber remodeling in mice.
Heliyon. 2024 Sep 14;10(18):e37475. doi: 10.1016/j.heliyon.2024.e37475. eCollection 2024 Sep 30.
2
Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine.
Neurosci Biobehav Rev. 2024 Feb;157:105523. doi: 10.1016/j.neubiorev.2023.105523. Epub 2023 Dec 22.
3
Alterations of the glutamatergic system in diabetes mellitus.
Metab Brain Dis. 2024 Feb;39(2):321-333. doi: 10.1007/s11011-023-01299-z. Epub 2023 Sep 25.
4
Control of circadian rhythm on cortical excitability and synaptic plasticity.
Front Neural Circuits. 2023 Mar 30;17:1099598. doi: 10.3389/fncir.2023.1099598. eCollection 2023.
5
Examination of Diurnal Variation and Sex Differences in Hippocampal Neurophysiology and Spatial Memory.
eNeuro. 2022 Nov 15;9(6). doi: 10.1523/ENEURO.0124-22.2022. Print 2022 Nov-Dec.
6
Nutritional Impact on Metabolic Homeostasis and Brain Health.
Front Neurosci. 2022 Jan 27;15:767405. doi: 10.3389/fnins.2021.767405. eCollection 2021.
8
Time-restricted feeding rescues high-fat-diet-induced hippocampal impairment.
iScience. 2021 May 11;24(6):102532. doi: 10.1016/j.isci.2021.102532. eCollection 2021 Jun 25.

本文引用的文献

1
Misaligned core body temperature rhythms impact cognitive performance of hospital shift work nurses.
Neurobiol Learn Mem. 2019 Apr;160:151-159. doi: 10.1016/j.nlm.2019.01.002. Epub 2019 Jan 3.
3
GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity.
Hippocampus. 2017 Aug;27(8):890-898. doi: 10.1002/hipo.22739. Epub 2017 May 27.
4
SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory.
Nat Commun. 2016 Sep 30;7:12926. doi: 10.1038/ncomms12926.
5
Trends in Obesity Among Adults in the United States, 2005 to 2014.
JAMA. 2016 Jun 7;315(21):2284-91. doi: 10.1001/jama.2016.6458.
6
Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.
Behav Brain Res. 2016 Jul 15;308:222-35. doi: 10.1016/j.bbr.2016.04.027. Epub 2016 May 4.
7
The Circadian System: A Regulatory Feedback Network of Periphery and Brain.
Physiology (Bethesda). 2016 May;31(3):170-81. doi: 10.1152/physiol.00037.2015.
8
Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1.
J Neurosci. 2016 Jan 27;36(4):1324-35. doi: 10.1523/JNEUROSCI.1934-15.2016.
9
Misaligned feeding impairs memories.
Elife. 2015 Dec 10;4:e09460. doi: 10.7554/eLife.09460.
10
Disruption of Daily Rhythms by High-Fat Diet Is Reversible.
PLoS One. 2015 Sep 14;10(9):e0137970. doi: 10.1371/journal.pone.0137970. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验