Zhu Laipan, Wang Yi-Chi, Li Ding, Wang Longfei, Wang Zhong Lin
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
Nano Lett. 2020 Nov 11;20(11):8298-8304. doi: 10.1021/acs.nanolett.0c03470. Epub 2020 Oct 12.
Piezo-phototronic effect is a fundamental effect of semiconductors lacking of central symmetry with geometries from one-dimensional (1D) nanowire to 3D bulk. Here, we present that the piezo-phototronic effect can even tune a spin-orbit coupled photoluminescence (PL) based on all-inorganic perovskite CsPbBr quantum dots (QDs). Although the cubic structure of CsPbBr QDs is nonpiezoelectric, a cooling treatment can change it to an orthorhombic structure, which is proven to possess a piezoelectric property. The spin-orbit coupled PL intensity is demonstrated to be dependent on the polarization of the excited light. Because of the manipulation of the spin-split energy levels via the piezo-phototronic effect, the spin-orbit coupled PL intensities under a -0.9% compressive strain for linearly and circularly polarized light excitations can be enhanced by 136% and 146%, respectively. These findings reveal fundamental understandings of the spin-orbit coupled PL dynamics and demonstrate promising optoelectronic applications of the piezo-phototronic effect in these QDs.
压光电子效应是缺乏中心对称性的半导体的一种基本效应,其几何结构范围从一维(1D)纳米线到三维体材料。在此,我们展示了压光电子效应甚至可以基于全无机钙钛矿CsPbBr量子点(QD)来调节自旋轨道耦合光致发光(PL)。尽管CsPbBr量子点的立方结构是非压电的,但冷却处理可将其转变为正交结构,事实证明该结构具有压电特性。自旋轨道耦合PL强度被证明取决于激发光的偏振。由于通过压光电子效应操纵自旋分裂能级,对于线性和圆偏振光激发,在-0.9%的压缩应变下,自旋轨道耦合PL强度分别可提高136%和146%。这些发现揭示了对自旋轨道耦合PL动力学的基本理解,并展示了压光电子效应在这些量子点中具有前景广阔的光电子应用。