Suppr超能文献

用于对接受 Barrett 监测的患者进行风险分层的预测性贝叶斯网络,以实现恶性肿瘤发展风险的个体化预测。

A predictive Bayesian network that risk stratifies patients undergoing Barrett's surveillance for personalized risk of developing malignancy.

机构信息

Department of General Surgery, Dumfries and Galloway Royal Infirmary, NHS Dumfries and Galloway, Dumfries, Scotland, United Kingdom.

出版信息

PLoS One. 2020 Oct 12;15(10):e0240620. doi: 10.1371/journal.pone.0240620. eCollection 2020.

Abstract

BACKGROUND

Barrett's esophagus is strongly associated with esophageal adenocarcinoma. Considering costs and risks associated with invasive surveillance endoscopies better methods of risk stratification are required to assist decision-making and move toward more personalised tailoring of Barrett's surveillance.

METHODS

A Bayesian network was created by synthesizing data from published studies analysing risk factors for developing adenocarcinoma in Barrett's oesophagus through a two-stage weighting process.

RESULTS

Data was synthesized from 114 studies (n = 394,827) to create the Bayesian network, which was validated against a prospectively maintained institutional database (n = 571). Version 1 contained 10 variables (dysplasia, gender, age, Barrett's segment length, statin use, proton pump inhibitor use, BMI, smoking, aspirin and NSAID use) and achieved AUC of 0.61. Version 2 contained 4 variables with the strongest evidence of association with the development of adenocarcinoma in Barrett's (dysplasia, gender, age, Barrett's segment length) and achieved an AUC 0.90.

CONCLUSION

This Bayesian network is unique in the way it utilizes published data to translate the existing empirical evidence surrounding the risk of developing adenocarcinoma in Barrett's esophagus to make personalized risk predictions. Further work is required but this tool marks a vital step towards delivering a more personalized approach to Barrett's surveillance.

摘要

背景

巴雷特食管与食管腺癌密切相关。考虑到与侵袭性内镜监测相关的成本和风险,需要更好的风险分层方法来辅助决策,并朝着更个性化的巴雷特食管监测方向发展。

方法

通过两阶段加权过程,综合分析巴雷特食管腺癌发生风险因素的已发表研究数据,构建贝叶斯网络。

结果

从 114 项研究(n = 394827)中综合数据,构建了贝叶斯网络,并与前瞻性维护的机构数据库(n = 571)进行验证。版本 1 包含 10 个变量(异型增生、性别、年龄、巴雷特食管段长度、他汀类药物使用、质子泵抑制剂使用、BMI、吸烟、阿司匹林和 NSAID 使用),AUC 为 0.61。版本 2 包含 4 个与巴雷特食管腺癌发生最相关的变量(异型增生、性别、年龄、巴雷特食管段长度),AUC 为 0.90。

结论

该贝叶斯网络的独特之处在于它利用已发表的数据,将现有的有关巴雷特食管腺癌发生风险的经验证据转化为个性化的风险预测。还需要进一步的工作,但该工具标志着朝着更个性化的巴雷特食管监测方法迈出了重要的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e51/7549831/31b5c2e2046c/pone.0240620.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验