Suppr超能文献

PI3K 驱动突变:一种基于生物物理膜的视角。

PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective.

机构信息

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.

Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Cancer Res. 2021 Jan 15;81(2):237-247. doi: 10.1158/0008-5472.CAN-20-0911. Epub 2020 Oct 12.

Abstract

Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site () and the other, for example, E542K and E545K, reduces the transition state barrier (), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.

摘要

Ras 在细胞膜上激活其效应器。活性 PI3Kα 及其相关的激酶/磷酸酶在富含信号脂质的膜区域组装。相比之下,Raf 激酶结构域延伸到细胞质中,其组装远离拥挤的膜表面。我们以膜为中心的结构观点强调了膜和信号脂质的时空原则,这有助于阐明 PI3Kα 的激活机制。在这里,我们重点关注由 PI3Kα 驱动突变驱动的激活机制,突出 PI3Kα 的双(多重)激活突变。单突变可能很有效,但双突变更强:它们的组合是特异性的,单个强驱动不能完全激活 PI3K,而两个弱驱动可能会也可能不会。相比之下,两个强驱动可能会成功激活 PI3K,例如,H1047R 调节膜相互作用,促进活性位点的底物结合(),而另一个,例如 E542K 和 E545K,则降低过渡态势垒(),通过 nSH2 释放自动抑制。虽然大多未被识别,但预计弱驱动是常见的,因此我们在这里询问双突变可能有多常见,以及为什么具有双突变的 PI3Kα 对抑制剂有有效反应。我们提供了 PI3Kα 激活中热点和弱驱动突变的结构观点,解释了它们的机制,将这些机制与 Raf 激活的机制进行了比较,并指出了靶向细胞特异性、染色质可及性和并行(或冗余)途径的必要性,以挫败预期出现的耐药性。总之,我们的生物物理观点描绘了激活过程,并突出了耐药性的挑战。

相似文献

1
PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective.
Cancer Res. 2021 Jan 15;81(2):237-247. doi: 10.1158/0008-5472.CAN-20-0911. Epub 2020 Oct 12.
2
Biophysical and Structural Characterization of Novel RAS-Binding Domains (RBDs) of PI3Kα and PI3Kγ.
J Mol Biol. 2021 Apr 16;433(8):166838. doi: 10.1016/j.jmb.2021.166838. Epub 2021 Feb 1.
3
Comparative molecular dynamics analyses on PIK3CA hotspot mutations with PI3Kα specific inhibitors and ATP.
Comput Biol Chem. 2022 Aug;99:107726. doi: 10.1016/j.compbiolchem.2022.107726. Epub 2022 Jul 8.
4
Single-Molecule Study Reveals How Receptor and Ras Synergistically Activate PI3Kα and PIP Signaling.
Biophys J. 2017 Dec 5;113(11):2396-2405. doi: 10.1016/j.bpj.2017.09.018.
5
Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B.
Int J Biol Macromol. 2020 Feb 1;144:643-655. doi: 10.1016/j.ijbiomac.2019.12.020. Epub 2019 Dec 6.
6
Structural effects of oncogenic PI3Kα mutations.
Curr Top Microbiol Immunol. 2010;347:43-53. doi: 10.1007/82_2010_53.
7
Ras assemblies and signaling at the membrane.
Curr Opin Struct Biol. 2020 Jun;62:140-148. doi: 10.1016/j.sbi.2020.01.009. Epub 2020 Feb 4.
8
The structural basis for Ras activation of PI3Kα lipid kinase.
Phys Chem Chem Phys. 2019 Jun 5;21(22):12021-12028. doi: 10.1039/c9cp00101h.
9
Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers.
Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt B):2304-2314. doi: 10.1016/j.bbadis.2017.10.032. Epub 2017 Oct 31.

引用本文的文献

1
Mutations in tumor signaling, metastases, and synthetic lethality establish distinct patterns.
PLoS Comput Biol. 2025 Aug 4;21(8):e1013351. doi: 10.1371/journal.pcbi.1013351. eCollection 2025 Aug.
2
Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function.
J Mol Biol. 2025 Jun 1;437(11):169044. doi: 10.1016/j.jmb.2025.169044. Epub 2025 Feb 25.
3
Oncogenic activation of in cancers: Emerging targeted therapies in precision oncology.
Genes Dis. 2024 Sep 10;12(2):101430. doi: 10.1016/j.gendis.2024.101430. eCollection 2025 Mar.
4
Ras, RhoA, and vascular pharmacology in neurodevelopment and aging.
Neurochem Int. 2024 Dec;181:105883. doi: 10.1016/j.neuint.2024.105883. Epub 2024 Oct 18.
5
Spatiotemporal control of kinases and the biomolecular tools to trace activity.
J Biol Chem. 2024 Nov;300(11):107846. doi: 10.1016/j.jbc.2024.107846. Epub 2024 Oct 1.
6
The value of protein allostery in rational anticancer drug design: an update.
Expert Opin Drug Discov. 2024 Sep;19(9):1071-1085. doi: 10.1080/17460441.2024.2384467. Epub 2024 Jul 28.
7
Mitogen signaling strength and duration can control cell cycle decisions.
Sci Adv. 2024 Jul 5;10(27):eadm9211. doi: 10.1126/sciadv.adm9211.
8
The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization.
Chem Sci. 2023 Dec 7;15(3):1003-1017. doi: 10.1039/d3sc04690g. eCollection 2024 Jan 17.
10
Protein conformational ensembles in function: roles and mechanisms.
RSC Chem Biol. 2023 Sep 5;4(11):850-864. doi: 10.1039/d3cb00114h. eCollection 2023 Nov 1.

本文引用的文献

1
Unravelling the effect of the E545K mutation on PI3Kα kinase.
Chem Sci. 2020 Feb 26;11(13):3511-3515. doi: 10.1039/c9sc05903b. eCollection 2020 Apr 7.
2
A structural model of a Ras-Raf signalosome.
Nat Struct Mol Biol. 2021 Oct;28(10):847-857. doi: 10.1038/s41594-021-00667-6. Epub 2021 Oct 8.
3
PI3K inhibitors: review and new strategies.
Chem Sci. 2020 May 19;11(23):5855-5865. doi: 10.1039/d0sc01676d. eCollection 2020 Jun 21.
4
Structural Features that Distinguish Inactive and Active PI3K Lipid Kinases.
J Mol Biol. 2020 Nov 6;432(22):5849-5859. doi: 10.1016/j.jmb.2020.09.002. Epub 2020 Sep 10.
5
Landscape and function of multiple mutations within individual oncogenes.
Nature. 2020 Jun;582(7810):95-99. doi: 10.1038/s41586-020-2175-2. Epub 2020 Apr 8.
6
Are Parallel Proliferation Pathways Redundant?
Trends Biochem Sci. 2020 Jul;45(7):554-563. doi: 10.1016/j.tibs.2020.03.013. Epub 2020 Apr 25.
7
Receptor tyrosine kinase activation: From the ligand perspective.
Curr Opin Cell Biol. 2020 Apr;63:174-185. doi: 10.1016/j.ceb.2020.01.016. Epub 2020 Feb 27.
8
Ubiquitination of the scaffold protein IQGAP1 diminishes its interaction with and activation of the Rho GTPase CDC42.
J Biol Chem. 2020 Apr 10;295(15):4822-4835. doi: 10.1074/jbc.RA119.011491. Epub 2020 Feb 24.
9
Analysis of Ras-effector interaction competition in large intestine and colorectal cancer context.
Small GTPases. 2021 May;12(3):209-225. doi: 10.1080/21541248.2020.1724596. Epub 2020 Feb 14.
10
Ras assemblies and signaling at the membrane.
Curr Opin Struct Biol. 2020 Jun;62:140-148. doi: 10.1016/j.sbi.2020.01.009. Epub 2020 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验