Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Cancer Res. 2021 Jan 15;81(2):237-247. doi: 10.1158/0008-5472.CAN-20-0911. Epub 2020 Oct 12.
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site () and the other, for example, E542K and E545K, reduces the transition state barrier (), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Ras 在细胞膜上激活其效应器。活性 PI3Kα 及其相关的激酶/磷酸酶在富含信号脂质的膜区域组装。相比之下,Raf 激酶结构域延伸到细胞质中,其组装远离拥挤的膜表面。我们以膜为中心的结构观点强调了膜和信号脂质的时空原则,这有助于阐明 PI3Kα 的激活机制。在这里,我们重点关注由 PI3Kα 驱动突变驱动的激活机制,突出 PI3Kα 的双(多重)激活突变。单突变可能很有效,但双突变更强:它们的组合是特异性的,单个强驱动不能完全激活 PI3K,而两个弱驱动可能会也可能不会。相比之下,两个强驱动可能会成功激活 PI3K,例如,H1047R 调节膜相互作用,促进活性位点的底物结合(),而另一个,例如 E542K 和 E545K,则降低过渡态势垒(),通过 nSH2 释放自动抑制。虽然大多未被识别,但预计弱驱动是常见的,因此我们在这里询问双突变可能有多常见,以及为什么具有双突变的 PI3Kα 对抑制剂有有效反应。我们提供了 PI3Kα 激活中热点和弱驱动突变的结构观点,解释了它们的机制,将这些机制与 Raf 激活的机制进行了比较,并指出了靶向细胞特异性、染色质可及性和并行(或冗余)途径的必要性,以挫败预期出现的耐药性。总之,我们的生物物理观点描绘了激活过程,并突出了耐药性的挑战。