Suppr超能文献

mTOR激活的变构机制可为双位点抑制剂的优化提供依据。

The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization.

作者信息

Liu Yonglan, Zhang Mingzhen, Jang Hyunbum, Nussinov Ruth

机构信息

Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA.

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA

出版信息

Chem Sci. 2023 Dec 7;15(3):1003-1017. doi: 10.1039/d3sc04690g. eCollection 2024 Jan 17.

Abstract

mTOR serine/threonine kinase is a cornerstone in the PI3K/AKT/mTOR pathway. Yet, the detailed mechanism of activation of its catalytic core is still unresolved, likely due to mTOR complexes' complexity. Its dysregulation was implicated in cancer and neurodevelopmental disorders. Using extensive molecular dynamics (MD) simulations and compiled published experimental data, we determine exactly how mTOR's inherent motifs can control the conformational changes in the kinase domain, thus kinase activity. We also chronicle the critical regulation by the unstructured negative regulator domain (NRD). When positioned inside the catalytic cleft (NRD IN state), mTOR tends to adopt a deep and closed catalytic cleft. This is primarily due to the direct interaction with the FKBP-rapamycin binding (FRB) domain which restricts it, preventing substrate access. Conversely, when outside the catalytic cleft (NRD OUT state), mTOR favors an open conformation, exposing the substrate-binding site on the FRB domain. We further show how an oncogenic mutation (L2427R) promotes shifting the mTOR ensemble toward the catalysis-favored state. Collectively, we extend mTOR's "active-site restriction" mechanism and clarify mutation action. In particular, our mechanism suggests that RMC-5552 (RMC-6272) bitopic inhibitors may benefit from adjustment of the (PEG) linker length when targeting certain mTOR variants. In the cryo-EM mTOR/RMC-5552 structure, the distance between the allosteric and orthosteric inhibitors is ∼22.7 Å. With a closed catalytic cleft, this linker bridges the sites. However, in our activation mechanism, in the open cleft it expands to ∼24.7 Å, offering what we believe to be the first direct example of how discovering an activation mechanism can potentially increase the affinity of inhibitors targeting mutants.

摘要

mTOR丝氨酸/苏氨酸激酶是PI3K/AKT/mTOR信号通路的基石。然而,其催化核心的详细激活机制仍未解决,这可能是由于mTOR复合物的复杂性所致。其失调与癌症和神经发育障碍有关。通过广泛的分子动力学(MD)模拟并整合已发表的实验数据,我们精确确定了mTOR的固有基序如何控制激酶结构域中的构象变化,进而控制激酶活性。我们还记录了非结构化负调控域(NRD)的关键调控作用。当位于催化裂隙内部(NRD IN状态)时,mTOR倾向于形成一个深邃且封闭的催化裂隙。这主要是由于与FKBP-雷帕霉素结合(FRB)结构域的直接相互作用对其产生限制,从而阻止底物进入。相反,当位于催化裂隙外部(NRD OUT状态)时,mTOR倾向于形成开放构象,使FRB结构域上的底物结合位点暴露出来。我们进一步展示了一种致癌突变(L2427R)如何促使mTOR整体向有利于催化的状态转变。总体而言,我们扩展了mTOR的“活性位点限制”机制并阐明了突变作用。特别是,我们的机制表明,当靶向某些mTOR变体时,RMC-5552(RMC-6272)双位点抑制剂可能会受益于(PEG)连接子长度的调整。在冷冻电镜mTOR/RMC-5552结构中,变构抑制剂和正构抑制剂之间的距离约为22.7 Å。在催化裂隙闭合的情况下,这个连接子连接着两个位点。然而,在我们的激活机制中,在裂隙开放时它会扩展到约24.7 Å,这为我们提供了首个直接实例,说明发现激活机制如何可能增加针对突变体的抑制剂的亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a28e/10793652/8d219088b299/d3sc04690g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验