Department of Physiology, University of Bern, 3012 Bern, Switzerland.
Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland.
J Neurosci. 2020 Nov 11;40(46):8799-8815. doi: 10.1523/JNEUROSCI.3028-19.2020. Epub 2020 Oct 12.
Signal propagation in the dendrites of many neurons, including cortical pyramidal neurons in sensory cortex, is characterized by strong attenuation toward the soma. In contrast, using dual whole-cell recordings from the apical dendrite and soma of layer 5 (L5) pyramidal neurons in the anterior cingulate cortex (ACC) of adult male mice we found good coupling, particularly of slow subthreshold potentials like NMDA spikes or trains of EPSPs from dendrite to soma. Only the fastest EPSPs in the ACC were reduced to a similar degree as in primary somatosensory cortex, revealing differential low-pass filtering capabilities. Furthermore, L5 pyramidal neurons in the ACC did not exhibit dendritic Ca spikes as prominently found in the apical dendrite of S1 (somatosensory cortex) pyramidal neurons. Fitting the experimental data to a NEURON model revealed that the specific distribution of , , , and was sufficient to explain the electrotonic dendritic structure causing a leaky distal dendritic compartment with correspondingly low input resistance and a compact perisomatic region, resulting in a decoupling of distal tuft branches from each other while at the same time efficiently connecting them to the soma. Our results give a biophysically plausible explanation of how a class of prefrontal cortical pyramidal neurons achieve efficient integration of subthreshold distal synaptic inputs compared with the same cell type in sensory cortices. Understanding cortical computation requires the understanding of its fundamental computational subunits. Layer 5 pyramidal neurons are the main output neurons of the cortex, integrating synaptic inputs across different cortical layers. Their elaborate dendritic tree receives, propagates, and transforms synaptic inputs into action potential output. We found good coupling of slow subthreshold potentials like NMDA spikes or trains of EPSPs from the distal apical dendrite to the soma in pyramidal neurons in the ACC, which was significantly better compared with S1. This suggests that frontal pyramidal neurons use a different integration scheme compared with the same cell type in somatosensory cortex, which has important implications for our understanding of information processing across different parts of the neocortex.
许多神经元的树突中的信号传播,包括感觉皮层中的皮质锥体细胞,其特征是朝向胞体的强烈衰减。相比之下,我们使用成年雄性小鼠扣带前皮质(ACC)中第 5 层(L5)锥体神经元的顶树突和胞体的双全细胞记录发现了良好的耦合,特别是像 NMDA 棘波或 EPSP 串这样的缓慢亚阈电位从树突到胞体。只有在 ACC 中最快的 EPSP 被降低到与初级体感皮层相似的程度,这表明存在差异的低通滤波能力。此外,ACC 中的 L5 锥体神经元没有像 S1(体感皮层)锥体神经元的顶树突中那样明显地表现出树突 Ca 棘波。将实验数据拟合到 NEURON 模型中表明, 、 、 、 的特定分布足以解释电紧张的树突结构,导致具有相应低输入电阻和紧凑的胞体区域的渗漏远端树突隔室,从而使远端树突分支彼此解耦,同时有效地将它们与胞体连接起来。我们的结果从生物物理上解释了一类前额叶皮质锥体神经元如何与感觉皮层中的相同细胞类型相比,实现亚阈远端突触输入的有效整合。理解皮层计算需要理解其基本的计算单元。L5 锥体神经元是皮层的主要输出神经元,整合来自不同皮层层的突触输入。它们精细的树突接收、传播和转换突触输入为动作电位输出。我们发现 ACC 中的锥体神经元从远端顶树突到胞体的缓慢亚阈电位(如 NMDA 棘波或 EPSP 串)之间存在良好的耦合,与 S1 相比明显更好。这表明额叶锥体神经元使用与体感皮层中相同细胞类型不同的整合方案,这对我们理解新皮层不同部位的信息处理具有重要意义。