State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
Addict Biol. 2021 Jul;26(4):e12969. doi: 10.1111/adb.12969. Epub 2020 Oct 12.
Internet gaming disorder (IGD), a worldwide mental health issue, has been widely studied using neuroimaging techniques during the last decade. Although dysfunctions in resting-state functional connectivity have been reported in IGD, mapping relationships from abnormal connectivity patterns to behavioral measures have not been fully investigated. Connectome-based predictive modeling (CPM)-a recently developed machine-learning approach-has been used to examine potential neural mechanisms in addictions and other psychiatric disorders. To identify the resting-state connections associated with IGD, we modified the CPM approach by replacing its core learning algorithm with a support vector machine. Resting-state functional magnetic resonance imaging (fMRI) data were acquired in 72 individuals with IGD and 41 healthy comparison participants. The modified CPM was conducted with respect to classification and regression. A comparison of whole-brain and network-based analyses showed that the default-mode network (DMN) is the most informative network in predicting IGD both in classification (individual identification accuracy = 78.76%) and regression (correspondence between predicted and actual psychometric scale score: r = 0.44, P < 0.001). To facilitate the characterization of the aberrant resting-state activity in the DMN, the identified networks have been mapped into a three-subsystem division of the DMN. Results suggest that individual differences in DMN function at rest could advance our understanding of IGD and variability in disorder etiology and intervention outcomes.
互联网游戏障碍(IGD)是一种全球性的心理健康问题,在过去十年中,已经使用神经影像学技术对其进行了广泛研究。尽管在 IGD 中已经报道了静息态功能连接的功能障碍,但将异常连接模式与行为测量联系起来的研究尚未完全开展。基于连接组学的预测建模(CPM)——一种新开发的机器学习方法——已被用于研究成瘾和其他精神疾病的潜在神经机制。为了确定与 IGD 相关的静息状态连接,我们通过用支持向量机替换其核心学习算法来修改 CPM 方法。对 72 名 IGD 患者和 41 名健康对照参与者进行了静息态功能磁共振成像(fMRI)数据采集。对修改后的 CPM 进行了分类和回归分析。全脑和基于网络的分析比较表明,默认模式网络(DMN)是预测 IGD 的最有信息量的网络,在分类(个体识别准确率为 78.76%)和回归(预测和实际心理量表得分之间的相关性:r = 0.44,P < 0.001)中都是如此。为了便于描述 DMN 中异常静息状态活动,所识别的网络已映射到 DMN 的三个子系统分区中。结果表明,DMN 功能在静息状态下的个体差异可以增进我们对 IGD 的理解,以及对疾病发病机制和干预结果变异性的理解。