Suppr超能文献

基于静息态连接组的支持向量机预测模型对网络成瘾障碍的研究。

Resting-state connectome-based support-vector-machine predictive modeling of internet gaming disorder.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.

IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

出版信息

Addict Biol. 2021 Jul;26(4):e12969. doi: 10.1111/adb.12969. Epub 2020 Oct 12.

Abstract

Internet gaming disorder (IGD), a worldwide mental health issue, has been widely studied using neuroimaging techniques during the last decade. Although dysfunctions in resting-state functional connectivity have been reported in IGD, mapping relationships from abnormal connectivity patterns to behavioral measures have not been fully investigated. Connectome-based predictive modeling (CPM)-a recently developed machine-learning approach-has been used to examine potential neural mechanisms in addictions and other psychiatric disorders. To identify the resting-state connections associated with IGD, we modified the CPM approach by replacing its core learning algorithm with a support vector machine. Resting-state functional magnetic resonance imaging (fMRI) data were acquired in 72 individuals with IGD and 41 healthy comparison participants. The modified CPM was conducted with respect to classification and regression. A comparison of whole-brain and network-based analyses showed that the default-mode network (DMN) is the most informative network in predicting IGD both in classification (individual identification accuracy = 78.76%) and regression (correspondence between predicted and actual psychometric scale score: r = 0.44, P < 0.001). To facilitate the characterization of the aberrant resting-state activity in the DMN, the identified networks have been mapped into a three-subsystem division of the DMN. Results suggest that individual differences in DMN function at rest could advance our understanding of IGD and variability in disorder etiology and intervention outcomes.

摘要

互联网游戏障碍(IGD)是一种全球性的心理健康问题,在过去十年中,已经使用神经影像学技术对其进行了广泛研究。尽管在 IGD 中已经报道了静息态功能连接的功能障碍,但将异常连接模式与行为测量联系起来的研究尚未完全开展。基于连接组学的预测建模(CPM)——一种新开发的机器学习方法——已被用于研究成瘾和其他精神疾病的潜在神经机制。为了确定与 IGD 相关的静息状态连接,我们通过用支持向量机替换其核心学习算法来修改 CPM 方法。对 72 名 IGD 患者和 41 名健康对照参与者进行了静息态功能磁共振成像(fMRI)数据采集。对修改后的 CPM 进行了分类和回归分析。全脑和基于网络的分析比较表明,默认模式网络(DMN)是预测 IGD 的最有信息量的网络,在分类(个体识别准确率为 78.76%)和回归(预测和实际心理量表得分之间的相关性:r = 0.44,P < 0.001)中都是如此。为了便于描述 DMN 中异常静息状态活动,所识别的网络已映射到 DMN 的三个子系统分区中。结果表明,DMN 功能在静息状态下的个体差异可以增进我们对 IGD 的理解,以及对疾病发病机制和干预结果变异性的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验