Suppr超能文献

利用脑功能连接组预测双相情感障碍中的抑郁和情绪高涨症状学。

Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes.

作者信息

Sankar Anjali, Shen Xilin, Colic Lejla, Goldman Danielle A, Villa Luca M, Kim Jihoon A, Pittman Brian, Scheinost Dustin, Constable R Todd, Blumberg Hilary P

机构信息

Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.

Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

出版信息

Psychol Med. 2023 Oct;53(14):6656-6665. doi: 10.1017/S003329172300003X. Epub 2023 Mar 9.

Abstract

BACKGROUND

The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM).

METHODS

Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD.

RESULTS

CPM predicted the severity of depressed [concordance between actual and predicted values ( = 0.23, = 0.031) and elevated ( = 0.27, = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample ( ⩾ 0.45, = 0.002).

CONCLUSIONS

This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.

摘要

背景

本研究旨在使用基于连接组的预测建模(CPM)这种机器学习方法,识别双相情感障碍(BD)患者中预测抑郁和情绪高涨症状的脑功能连接组。

方法

从81名患有BD的成年人在执行情绪处理任务时获取功能磁共振成像数据。应用具有5000次留一法交叉验证排列的CPM,以识别在汉密尔顿抑郁量表和杨氏躁狂量表上预测抑郁和情绪高涨症状评分的功能连接组。在43名患有BD的成年人的独立样本中测试所识别的连接组的预测能力。

结果

CPM预测了抑郁(实际值与预测值之间的一致性=0.23,P=0.031)和情绪高涨(=0.27,P=0.01)的严重程度。左侧背外侧前额叶皮层和辅助运动区节点的功能连接,与其他前后皮质、边缘、运动和小脑区域的半球间和半球内连接,预测了抑郁情绪的严重程度。左侧梭状回和右侧视觉联合区节点与运动、岛叶、边缘和后皮质的半球间和半球内连接,预测了情绪高涨的严重程度。这些网络在独立样本中预测了情绪症状(r⩾0.45,P=0.002)。

结论

本研究识别了BD中预测抑郁和情绪高涨严重程度的分布式功能连接组。服务于情绪、认知和精神运动控制的连接组预测了抑郁情绪的严重程度,而服务于情绪和社会感知功能的连接组预测了情绪高涨的严重程度。识别这些连接组网络可能有助于为情绪症状的靶向治疗的发展提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53e0/10600938/6c8c3d82aabe/S003329172300003X_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验