Cakmak Eren, Schlegel Udo, Jackle Dominik, Keim Daniel, Schreck Tobias
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):517-527. doi: 10.1109/TVCG.2020.3030398. Epub 2021 Jan 28.
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
对大规模动态图进行基于概述的可视化分析面临着重大挑战。我们提出了多尺度快照,这是一种可视化分析方法,用于在多个时间尺度上分析动态图的时间摘要。首先,我们递归地生成时间摘要,将图的重叠序列抽象为紧凑的快照。其次,我们将图嵌入应用于快照,以学习每个图序列的低维表示,从而加速特定的分析任务(例如,相似性搜索)。第三,我们将从粗粒度到细粒度的快照的演化数据进行可视化,以半自动地分析时间状态、趋势和异常值。该方法使我们能够发现相似的时间摘要(例如,重复出现的状态),减少时间数据以加速自动分析,并探索动态图的结构和时间属性。我们通过定量评估和对真实世界数据集的应用来证明我们方法的有效性。