Suppr超能文献

美国有线电视新闻网解释:通过交互式可视化学习卷积神经网络。

CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization.

作者信息

Wang Zijie J, Turko Robert, Shaikh Omar, Park Haekyu, Das Nilaksh, Hohman Fred, Kahng Minsuk, Polo Chau Duen Horng

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1396-1406. doi: 10.1109/TVCG.2020.3030418. Epub 2021 Feb 1.

Abstract

Deep learning's great success motivates many practitioners and students to learn about this exciting technology. However, it is often challenging for beginners to take their first step due to the complexity of understanding and applying deep learning. We present CNN Explainer, an interactive visualization tool designed for non-experts to learn and examine convolutional neural networks (CNNs), a foundational deep learning model architecture. Our tool addresses key challenges that novices face while learning about CNNs, which we identify from interviews with instructors and a survey with past students. CNN Explainer tightly integrates a model overview that summarizes a CNN's structure, and on-demand, dynamic visual explanation views that help users understand the underlying components of CNNs. Through smooth transitions across levels of abstraction, our tool enables users to inspect the interplay between low-level mathematical operations and high-level model structures. A qualitative user study shows that CNN Explainer helps users more easily understand the inner workings of CNNs, and is engaging and enjoyable to use. We also derive design lessons from our study. Developed using modern web technologies, CNN Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern deep learning techniques.

摘要

深度学习的巨大成功促使许多从业者和学生去了解这一令人兴奋的技术。然而,由于理解和应用深度学习的复杂性,初学者往往很难迈出第一步。我们展示了CNN Explainer,这是一个交互式可视化工具,专为非专家设计,用于学习和研究卷积神经网络(CNN),这是一种基础的深度学习模型架构。我们的工具解决了新手在学习CNN时面临的关键挑战,这些挑战是我们通过对教师的访谈和对往届学生的调查确定的。CNN Explainer紧密集成了一个总结CNN结构的模型概述,以及按需提供的动态视觉解释视图,帮助用户理解CNN的底层组件。通过跨抽象层次的平滑过渡,我们的工具使用户能够检查低级数学运算和高级模型结构之间的相互作用。一项定性用户研究表明,CNN Explainer帮助用户更轻松地理解CNN的内部工作原理,并且使用起来很有趣。我们还从研究中得出了设计经验。CNN Explainer使用现代网络技术开发,可在用户的网络浏览器中本地运行,无需安装或特殊硬件,从而扩大了公众对现代深度学习技术的教育获取途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验