Tat Trinny, Chen Guorui, Xu Jing, Zhao Xun, Fang Yunsheng, Chen Jun
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Sci Adv. 2025 Apr 4;11(14):eadt6631. doi: 10.1126/sciadv.adt6631.
Parkinson's disease (PD) is one of the rapidly growing neurodegenerative diseases, affecting more than 10 million people worldwide. Early and accurate diagnosis of PD is highly desirable for therapeutic interventions but remains a substantial challenge. We developed a soft, portable intelligent keyboard leveraging magnetoelasticity to detect subtle pressure variations in keystroke dynamics by converting continuous keystrokes into high-fidelity electrical signals, thus enabling the quantitative analysis of PD motor symptoms using machine learning. Relying on a fundamental working mechanism, the intelligent keyboard demonstrates highly sensitive, intrinsically waterproof, and biocompatible properties, with the successful demonstration in a pilot study on patients with PD. To facilitate the potential continuous monitoring of PD, a customized cellphone application was developed to integrate the intelligent keyboard into a wireless platform. Together, the intelligent keyboard system's compelling properties position it as a promising tool for advancing early diagnosis and facilitating personalized, predictive, preventative, and participatory approaches to PD healthcare.
帕金森病(PD)是迅速增加的神经退行性疾病之一,全球有超过1000万人受其影响。对帕金森病进行早期准确诊断对于治疗干预非常必要,但仍然是一项重大挑战。我们开发了一种柔软、便携的智能键盘,利用磁弹性通过将连续按键转换为高保真电信号来检测按键动态中的细微压力变化,从而能够使用机器学习对帕金森病的运动症状进行定量分析。基于基本工作机制,该智能键盘具有高灵敏度、本质防水和生物相容性等特性,并在帕金森病患者的初步研究中得到成功验证。为便于对帕金森病进行潜在的持续监测,我们开发了一款定制手机应用程序,将智能键盘集成到无线平台中。智能键盘系统的这些引人注目的特性使其成为推进早期诊断以及促进帕金森病医疗保健的个性化、预测性、预防性和参与性方法的有前途的工具。