Suppr超能文献

基于 EEG 的睡眠阶段检测的降维:自编码器、主成分分析和因子分析的比较。

Dimensionality reduction for EEG-based sleep stage detection: comparison of autoencoders, principal component analysis and factor analysis.

机构信息

University Politehnica of Bucharest, Bucharest, Romania.

Onera Health, Eindhoven, The Netherlands.

出版信息

Biomed Tech (Berl). 2020 Oct 12;66(2):125-136. doi: 10.1515/bmt-2020-0139. Print 2021 Apr 27.

Abstract

Methods developed for automatic sleep stage detection make use of large amounts of data in the form of polysomnographic (PSG) recordings to build predictive models. In this study, we investigate the effect of several dimensionality reduction techniques, i.e., principal component analysis (PCA), factor analysis (FA), and autoencoders (AE) on common classifiers, e.g., random forests (RF), multilayer perceptron (MLP), long-short term memory (LSTM) networks, for automated sleep stage detection. Experimental testing is carried out on the MGH Dataset provided in the "". The signals used as input are the six available (EEG) electoencephalographic channels and combinations with the other PSG signals provided: ECG - electrocardiogram, EMG - electromyogram, respiration based signals - respiratory efforts and airflow. We observe that a similar or improved accuracy is obtained in most cases when using all dimensionality reduction techniques, which is a promising result as it allows to reduce the computational load while maintaining performance and in some cases also improves the accuracy of automated sleep stage detection. In our study, using autoencoders for dimensionality reduction maintains the performance of the model, while using PCA and FA the accuracy of the models is in most cases improved.

摘要

方法开发用于自动睡眠阶段检测利用大量的多导睡眠图 (PSG) 记录数据形式构建预测模型。在这项研究中,我们研究了几种降维技术的效果,即主成分分析 (PCA)、因子分析 (FA) 和自动编码器 (AE) 对常见分类器的影响,例如随机森林 (RF)、多层感知机 (MLP)、长短时记忆 (LSTM) 网络,用于自动睡眠阶段检测。实验测试是在“”中提供的 MGH 数据集上进行的。用作输入的信号是六个可用的 (EEG) 脑电图通道和与其他 PSG 信号的组合:心电图 - 心电图、肌电图 - 肌电图、基于呼吸的信号 - 呼吸努力和气流。我们观察到,在大多数情况下,使用所有降维技术都可以获得相似或更高的准确性,这是一个有希望的结果,因为它允许在保持性能的同时降低计算负载,并且在某些情况下还可以提高自动睡眠阶段检测的准确性。在我们的研究中,使用自动编码器进行降维可以保持模型的性能,而在大多数情况下,使用 PCA 和 FA 可以提高模型的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验