Suppr超能文献

在更温暖的世界中,热带森林光合作用的恢复力的实证证据。

Empirical evidence for resilience of tropical forest photosynthesis in a warmer world.

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.

Department of Forestry, Michigan State University, East Lansing, MI, USA.

出版信息

Nat Plants. 2020 Oct;6(10):1225-1230. doi: 10.1038/s41477-020-00780-2. Epub 2020 Oct 12.

Abstract

Tropical forests may be vulnerable to climate change if photosynthetic carbon uptake currently operates near a high temperature limit. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD), and biochemical restrictions (H2), a direct temperature response. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. ). If elevated [CO] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized, tropical forest photosynthesis may have a margin of resilience to future warming.

摘要

如果光合作用碳吸收目前接近高温限制,热带森林可能容易受到气候变化的影响。预测热带森林功能需要了解两种高温光合作用下降机制的相对贡献:气孔限制(H1),这是由于温度相关的大气蒸气压亏缺(VPD)变化引起的间接反应,以及生化限制(H2),这是直接的温度响应。它们的相对控制预测了不同的结果 - H1 预计随着未来大气 [CO] 的共同升高而减少,而 H2 则预示着随着温度的升高光合作用会下降。因此,在高温下区分这两种机制至关重要,但由于 VPD 在自然环境中与温度高度相关,因此很难做到。我们使用森林中尺度来量化未来温度条件下热带总生态系统生产力(GEP)对未来温度的敏感性,同时通过控制湿度来限制 VPD。然后,我们通过通量塔衍生的四个热带森林站点的原位 GEP 趋势,分析性地将温度和 VPD 效应与当前气候下进行了分离。这两种方法都显示出 GEP 对 VPD 的一致、负敏感,但对温度的直接响应很小。重要的是,在低 VPD 的中尺度环境中,GEP 一直持续到 38°C,这一温度超过了对 2100 年热带森林的预测(参考文献)。如果假设升高的 [CO] 通过提高水利用效率缓解 VPD 诱导的气孔限制,那么热带森林的光合作用可能对未来变暖具有一定的恢复力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验