Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.
Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, Zhejiang, P.R.China.
Theranostics. 2020 Sep 15;10(25):11479-11496. doi: 10.7150/thno.49870. eCollection 2020.
Tubular damage initiated by inflammatory response and ischemic/hypoxic stress is a hallmark of septic acute kidney injury (AKI), albeit the molecular mechanism coupling the two events remains unclear. We investigated the intrinsic nature of tubular damage with respect to inflammatory/hypoxic stress during septic AKI. The apoptotic response of tubular cells to LPS stimuli was analyzed before and after hypoxia exposure. Cellular ubiquitination, co-immunoprecipitation, GST-pulldown, protein kinase assay, immunofluorescence and CRISPR technology were adopted to determine the molecular mechanism underlying this process. characterization was performed in wild-type and DAPK1 mice models of cecal ligation and puncture (CLP). We found that the MyD88-dependent inflammatory response couples to tubular damage during LPS stimuli under hypoxia in a Fn14/SCF-dispensable manner via recruitment of caspase-8 with TRIF-RIP1 signalosome mediated by DAPK1, which directly binds to and phosphorylates Pellino1 at Ser39, leading to Pellino1 poly-ubiquitination and turnover. Either pharmacological deactivation or genetic ablation of DAPK1 makes tubular cells refractory to the LPS-induced damage in the context of hypoxia, while kinase activity of DAPK1 is essential for ruin execution. Targeting DAPK1 effectively protects mice against septic AKI and potentiates the efficacy of a MyD88 homodimerization inhibitor, ST2825. Our findings provide a rationale for the mechanism whereby inflammation intersects with hypoxic tubular damage during septic AKI through a previously unappreciated role of DAPK1-inducible Ser39 phosphorylation in Pellino1 turnover and underscore that combined targeting DAPK1 and MyD88 might be a feasible strategy for septic AKI management.
由炎症反应和缺血/缺氧应激引起的管状损伤是脓毒症急性肾损伤 (AKI) 的标志,尽管将这两个事件联系起来的分子机制仍不清楚。我们研究了在脓毒症 AKI 期间,炎症/缺氧应激下管状损伤的内在性质。在缺氧暴露前后分析了肾小管细胞对 LPS 刺激的凋亡反应。采用细胞泛素化、共免疫沉淀、GST 下拉、蛋白激酶测定、免疫荧光和 CRISPR 技术来确定这一过程的分子机制。在盲肠结扎和穿刺 (CLP) 的野生型和 DAPK1 小鼠模型中进行了表征。我们发现,MyD88 依赖性炎症反应在 LPS 刺激下通过募集半胱天冬酶-8与 TRIF-RIP1 信号体偶联,在缺氧条件下与管状损伤偶联,这种偶联是通过 DAPK1 介导的,DAPK1 直接结合并磷酸化 Pellino1 的 Ser39,导致 Pellino1 多泛素化和周转。DAPK1 的药理学失活或基因敲除使肾小管细胞在缺氧条件下对 LPS 诱导的损伤产生抗性,而 DAPK1 的激酶活性对于破坏执行是必不可少的。靶向 DAPK1 可有效保护小鼠免受脓毒症 AKI 的影响,并增强 MyD88 同源二聚体抑制剂 ST2825 的疗效。我们的研究结果为炎症通过 DAPK1 诱导的 Ser39 磷酸化在 Pellino1 周转中的新作用与缺氧性管状损伤相互作用的机制提供了依据,并强调联合靶向 DAPK1 和 MyD88 可能是脓毒症 AKI 管理的一种可行策略。