Suppr超能文献

RecA-DNA 突触和 D 环结构中链交换的机制。

Mechanism of strand exchange from RecA-DNA synaptic and D-loop structures.

机构信息

Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

Zhejiang University School of Medicine, Zhejiang, China.

出版信息

Nature. 2020 Oct;586(7831):801-806. doi: 10.1038/s41586-020-2820-9. Epub 2020 Oct 14.

Abstract

The strand-exchange reaction is central to homologous recombination. It is catalysed by the RecA family of ATPases, which form a helical filament with single-stranded DNA (ssDNA) and ATP. This filament binds to a donor double-stranded DNA (dsDNA) to form synaptic filaments, which search for homology and then catalyse the exchange of the complementary strand, forming either a new heteroduplex or-if homology is limited-a D-loop. How synaptic filaments form, search for homology and catalyse strand exchange is poorly understood. Here we report the cryo-electron microscopy analysis of synaptic mini-filaments with both non-complementary and partially complementary dsDNA, and structures of RecA-D-loop complexes containing a 10- or a 12-base-pair heteroduplex. The C-terminal domain of RecA binds to dsDNA and directs it to the RecA L2 loop, which inserts into and opens up the duplex. The opening propagates through RecA sequestering the homologous strand at a secondary DNA-binding site, which frees the complementary strand to sample pairing with the ssDNA. At each RecA step, there is a roughly 20% probability that duplex opening will terminate and the as-yet-unopened dsDNA portion will bind to another C-terminal domain. Homology suppresses this process, through the cooperation of heteroduplex pairing with the binding of ssDNA to the secondary site, to extend dsDNA opening. This mechanism locally limits the length of ssDNA sampled for pairing if homology is not encountered, and could allow for the formation of multiple, widely separated synapses on the donor dsDNA, which would increase the likelihood of encountering homology. These findings provide key mechanistic insights into homologous recombination.

摘要

链交换反应是同源重组的核心。它由 RecA 家族的 ATP 酶催化,这些酶与单链 DNA(ssDNA)和 ATP 形成螺旋丝。这种丝与供体双链 DNA(dsDNA)结合形成突触丝,这些丝寻找同源性,然后催化互补链的交换,形成新的异源双链体,或者 - 如果同源性有限 - 形成 D 环。突触丝如何形成、寻找同源性并催化链交换还知之甚少。在这里,我们报告了具有非互补和部分互补 dsDNA 的突触小丝的低温电子显微镜分析,以及含有 10 或 12 个碱基对异源双链体的 RecA-D 环复合物的结构。RecA 的 C 端结构域与 dsDNA 结合,并将其引导至 RecA L2 环,该环插入并打开双链体。开口通过 RecA 传播,将同源链隔离在二级 DNA 结合位点上,从而使互补链自由与 ssDNA 配对。在每个 RecA 步骤中,双链体开口终止的概率约为 20%,而尚未打开的 dsDNA 部分将与另一个 C 端结构域结合。通过异源双链体与 ssDNA 结合到二级位点的配对合作,同源性抑制了这个过程,从而延长了 dsDNA 的开口。如果没有遇到同源性,这种机制会局部限制用于配对的 ssDNA 的长度,并允许在供体 dsDNA 上形成多个广泛分离的突触,从而增加遇到同源性的可能性。这些发现为同源重组提供了关键的机制见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4957/8366275/24090b5843dc/nihms-1628103-f0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验