Suppr超能文献

估算州以下一级非意愿生育和妊娠的发生率,为方案设计提供信息。

Estimating the incidence of unintended births and pregnancies at the sub-state level to inform program design.

机构信息

Mathematica, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2020 Oct 15;15(10):e0240407. doi: 10.1371/journal.pone.0240407. eCollection 2020.

Abstract

OBJECTIVES

Unintended (mistimed or unwanted) pregnancies occur frequently in the United States and have negative effects. When designing prevention programs and intervention strategies for the provision of comprehensive birth control methods, it is necessary to identify (1) populations at high risk of unintended pregnancy, and (2) geographic areas with a concentration of need.

METHODS

To estimate the proportion and incidence of unintended births and pregnancies for regions in Missouri, two machine-learning prediction models were developed using data from the National Survey of Family Growth and the Missouri Pregnancy Risk Assessment Monitoring System. Each model was applied to Missouri birth certificate data from 2014 to 2016 to estimate the number of unintended births and pregnancies across regions in Missouri. Population sizes from the American Community Survey were incorporated to estimate the incidence of unintended births and pregnancies.

RESULTS

About 24,500 (34.0%) of the live births in Missouri each year were estimated to have resulted from unintended pregnancies: about 25 per 1,000 women (ages 15 to 45) annually. Further, 40,000 pregnancies (39.7%) were unintended each year: about 41 per 1,000 women annually. Unintended pregnancy was concentrated in Missouri's largest urban areas, and annual incidence varied substantially across regions.

CONCLUSIONS

Our proposed methodology was feasible to implement. Random forest modeling identified factors in the data that best predicted unintended birth and pregnancy and outperformed other approaches. Maternal age, marital status, health insurance status, parity, and month that prenatal care began predict unintended pregnancy among women with a recent live birth. Using this approach to estimate the rates of unintended births and pregnancies across regions within Missouri revealed substantial within-state variation in the proportion and incidence of unintended pregnancy. States and other agencies could use this study's results or methods to better target interventions to reduce unintended pregnancy or address other public health needs.

摘要

目的

在美国,非意愿(时机不当或不想要)妊娠频繁发生,并产生负面影响。在设计提供全面避孕方法的预防计划和干预策略时,有必要确定(1)意外妊娠风险高的人群,以及(2)需要集中的地理区域。

方法

为了估计密苏里州各地区意外分娩和妊娠的比例和发生率,使用来自国家家庭增长调查和密苏里州妊娠风险评估监测系统的数据,开发了两个机器学习预测模型。每个模型都应用于 2014 年至 2016 年的密苏里州出生证明数据,以估计密苏里州各地区的意外分娩和妊娠数量。人口普查数据中的人口规模被纳入其中,以估计意外分娩和妊娠的发生率。

结果

每年约有 24500 例(34.0%)密苏里州的活产被估计是意外妊娠的结果:每年每 1000 名女性(15 至 45 岁)约有 25 例。此外,每年约有 40000 例(39.7%)妊娠是意外的:每年每 1000 名女性约有 41 例。意外妊娠集中在密苏里州最大的城市地区,各地区的年发生率差异很大。

结论

我们提出的方法是可行的。随机森林模型确定了数据中最佳预测意外分娩和妊娠的因素,并且表现优于其他方法。最近分娩的女性中,母亲年龄、婚姻状况、医疗保险状况、生育次数和开始产前护理的月份预测意外妊娠。使用这种方法来估计密苏里州各地区意外分娩和妊娠的发生率,显示出该州内意外妊娠比例和发生率存在很大差异。州和其他机构可以使用这项研究的结果或方法,更好地针对减少意外妊娠或解决其他公共卫生需求的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ea/7561158/8776e4b3e873/pone.0240407.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验