Suppr超能文献

利用 HR- ¹H NMR 光谱和多元统计分析来确定草药混合物用于浸剂的组成。

HR- H NMR spectroscopy and multivariate statistical analysis to determine the composition of herbal mixtures for infusions.

机构信息

Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy.

出版信息

Phytochem Anal. 2021 Jul;32(4):544-553. doi: 10.1002/pca.3002. Epub 2020 Oct 14.

Abstract

INTRODUCTION

The ever-growing diffusion and consumption of herbal teas, due to their sensory attributes and well-known health benefits exposes them to the real risk of adulteration, especially in the case of commercial mixtures already minced for infusion. Therefore, novel and suitable tools for the control of these valuable products are increasingly required.

OBJECTIVES

This work provides new insights for the authenticity study of infusions. The main objective was verifying the potential of proton nuclear magnetic resonance ( H-NMR) combined with partial least square (PLS) regression to build highly predictive models, useful for the determination of the real amounts of herbs in mixtures, by the simple analysis of the related infusion.

MATERIALS AND METHODS

Peppermint, fennel, lemon balm, and passiflora were chosen to set-up an experimental plan according to a central composite design (CCD). One-dimensional nuclear Overhauser effect spectroscopy (1D-NOESY) spectra were properly pretreated and then analysed by chemometrics to extract significant information from the raw data.

RESULTS

Venetian-blind cross-validation and different chemometric indicators (RMSEC, RMSECV, RMSEP, R , R R ) were used to establish the best model, which include four factors explaining 88.70 and 83.77% of the total variance in X and Y, respectively.

CONCLUSIONS

These promising results have laid the basis for further development of the method, to extend its applicability and make it more scalable. This tool could replace expensive separative techniques and protect the rights of consumers with particular attention to safety issues and quality assurance.

摘要

简介

由于草本茶具有感官属性和众所周知的健康益处,其传播和消费不断增加,因此它们面临着真正的掺假风险,尤其是对于已经切碎用于浸泡的商业混合物。因此,越来越需要新的、合适的工具来控制这些有价值的产品。

目的

本研究为浸出液的真实性研究提供了新的见解。主要目标是验证质子核磁共振( 1 H-NMR)与偏最小二乘(PLS)回归相结合建立高度预测模型的潜力,通过简单分析相关浸出液,可用于确定混合物中草药的实际含量。

材料与方法

根据中心复合设计(CCD)选择薄荷、茴香、柠檬香脂和西番莲来设置实验方案。一维核 Overhauser 效应光谱(1D-NOESY)光谱经过适当预处理,然后通过化学计量学进行分析,从原始数据中提取有意义的信息。

结果

威尼斯百叶窗交叉验证和不同的化学计量学指标(RMSEC、RMSECV、RMSEP、R 2 、R 2 adj 、R 2 cv )用于建立最佳模型,该模型包括四个因子,分别解释 X 和 Y 总方差的 88.70%和 83.77%。

结论

这些有希望的结果为进一步开发该方法奠定了基础,以扩大其适用性并使其更具可扩展性。该工具可以替代昂贵的分离技术,特别关注安全问题和质量保证,保护消费者的权益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验