Suppr超能文献

基于医院网络数据的流感和新冠疫情微观流行的实时时空分析:邻里层面热点的共定位

Real-Time Spatiotemporal Analysis of Microepidemics of Influenza and COVID-19 Based on Hospital Network Data: Colocalization of Neighborhood-Level Hotspots.

作者信息

Mylona Evangelia K, Shehadeh Fadi, Kalligeros Markos, Benitez Gregorio, Chan Philip A, Mylonakis Eleftherios

机构信息

At the time of the study, all authors were with the Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI. Philip A. Chan was also with the Rhode Island Department of Health Division of Preparedness, Response, Infectious Disease, and Emergency Medical Services, Providence.

出版信息

Am J Public Health. 2020 Dec;110(12):1817-1824. doi: 10.2105/AJPH.2020.305911. Epub 2020 Oct 15.

Abstract

To identify spatiotemporal patterns of epidemic spread at the community level. We extracted influenza cases reported between 2016 and 2019 and COVID-19 cases reported in March and April 2020 from a hospital network in Rhode Island. We performed a spatiotemporal hotspot analysis to simulate a real-time surveillance scenario. We analyzed 6527 laboratory-confirmed influenza cases and identified microepidemics in more than 1100 neighborhoods, and more than half of the neighborhoods that had hotspots in a season became hotspots in the next season. We used data from 731 COVID-19 cases, and we found that a neighborhood was 1.90 times more likely to become a COVID-19 hotspot if it had been an influenza hotspot in 2018 to 2019. The use of readily available hospital data allows the real-time identification of spatiotemporal trends and hotspots of microepidemics. As local governments move to reopen the economy and ease physical distancing, the use of historic influenza hotspots could guide early prevention interventions, while the real-time identification of hotspots would enable the implementation of interventions that focus on small-area containment and mitigation.

摘要

为了识别社区层面疫情传播的时空模式。我们从罗德岛的一个医院网络中提取了2016年至2019年报告的流感病例以及2020年3月和4月报告的新冠肺炎病例。我们进行了时空热点分析以模拟实时监测场景。我们分析了6527例实验室确诊的流感病例,并在1100多个社区中识别出微疫情,且一个季节中出现热点的社区有超过一半在下个季节成为热点。我们使用了731例新冠肺炎病例的数据,并且发现,如果一个社区在2018年至2019年是流感热点,那么它成为新冠肺炎热点的可能性要高1.90倍。利用现成的医院数据能够实时识别微疫情的时空趋势和热点。随着地方政府着手重新开放经济并放宽物理距离措施,利用历史流感热点可以指导早期预防干预措施,而实时识别热点将有助于实施侧重于小区域控制和缓解的干预措施。

相似文献

5
COVID-19 Is Not the Flu: Four Graphs From Four Countries.COVID-19 与流感不同:四个国家的四张图表。
Front Public Health. 2021 Mar 10;9:628479. doi: 10.3389/fpubh.2021.628479. eCollection 2021.

引用本文的文献

本文引用的文献

2
Small-area methods for investigation of environment and health.小区域环境与健康调查方法。
Int J Epidemiol. 2020 Apr 1;49(2):686-699. doi: 10.1093/ije/dyaa006.
5
An interactive web-based dashboard to track COVID-19 in real time.一个基于网络的交互式仪表盘,用于实时追踪新冠病毒。
Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1. Epub 2020 Feb 19.
7
Real-time Epidemic Forecasting: Challenges and Opportunities.实时疫情预测:挑战与机遇。
Health Secur. 2019 Jul/Aug;17(4):268-275. doi: 10.1089/hs.2019.0022.
10
Spatiotemporal Analysis of the 2014 Ebola Epidemic in West Africa.2014年西非埃博拉疫情的时空分析
PLoS Comput Biol. 2016 Dec 8;12(12):e1005210. doi: 10.1371/journal.pcbi.1005210. eCollection 2016 Dec.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验