Adams W T, Skopek T R
J Mol Biol. 1987 Apr 5;194(3):391-6. doi: 10.1016/0022-2836(87)90669-3.
The Monte Carlo estimate of the p value of the hypergeometric test is described and advocated for the testing of the hypothesis that different treatments induce the same mutational spectrum. The hypergeometric test is a generalization of Fisher's "exact" test for tables with more than two rows and two columns. Use of the test is demonstrated by the analysis of data from the characterization of nonsense mutations in the lacI gene of Escherichia coli. Unlike the chi-square test, the hypergeometric test remains valid when applied to sparse cross-classification tables. The hypergeometric test has the most discrimination power of any statistical test that could be employed routinely to compare samples from mutational spectra. Direct application of the hypergeometric test to large cross-classification tables is excessively computation intensive, but estimation of its p value via Monte Carlo techniques is practical.
描述并提倡使用超几何检验p值的蒙特卡罗估计,以检验不同治疗方法是否诱导相同突变谱这一假设。超几何检验是Fisher“精确”检验针对多于两行两列表格的推广。通过对大肠杆菌lacI基因无义突变特征数据的分析,展示了该检验的应用。与卡方检验不同,超几何检验应用于稀疏交叉分类表时仍然有效。在常规用于比较突变谱样本的任何统计检验中,超几何检验具有最强的辨别力。将超几何检验直接应用于大型交叉分类表计算量过大,但通过蒙特卡罗技术估计其p值是可行的。