Vision Science Graduate Program, University of California, Berkeley, School of Optometry, Berkeley, CA 94720.
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.
eNeuro. 2020 Oct 26;7(5). doi: 10.1523/ENEURO.0022-20.2020. Print 2020 Sep/Oct.
Horizontal cells (HCs) form reciprocal synapses with rod and cone photoreceptors, an arrangement that underlies lateral inhibition in the retina. HCs send negative and positive feedback signals to photoreceptors, but how HCs initiate these signals remains unclear. Unfortunately, because HCs have no unique neurotransmitter receptors, there are no pharmacological treatments for perturbing membrane potential specifically in HCs. Here we use transgenic zebrafish whose HCs express alien receptors, enabling cell-type-specific control by cognate alien agonists. To depolarize HCs, we used the Phe-Met-Arg-Phe-amide (FMRFamide)-gated Na channel (FaNaC) activated by the invertebrate neuropeptide FMRFamide. To hyperpolarize HCs we used a pharmacologically selective actuator module (PSAM)-glycine receptor (GlyR), an engineered Cl selective channel activated by a synthetic agonist. Expression of FaNaC or PSAM-GlyR was restricted to HCs with the cell-type selective promoter for connexin-55.5. We assessed HC-feedback control of photoreceptor synapses in three ways. First, we measured presynaptic exocytosis from photoreceptor terminals using the fluorescent dye FM1-43. Second, we measured the electroretinogram (ERG) b-wave, a signal generated by postsynaptic responses. Third, we used Ca imaging in retinal ganglion cells (RGCs) expressing the Ca indicator GCaMP6. Addition of FMRFamide significantly decreased FM1-43 destaining in darkness, whereas the addition of PSAM-GlyR significantly increased it. However, both agonists decreased the light-elicited ERG b-wave and eliminated surround inhibition of the Ca response of RGCs. Taken together, our findings show that chemogenetic tools can selectively manipulate negative feedback from HCs, providing a platform for understanding its mechanism and helping to elucidate its functional roles in visual information processing at a succession of downstream stages.
水平细胞 (HCs) 与视杆和视锥感光细胞形成相互突触,这种排列方式是视网膜侧向抑制的基础。HCs 向感光细胞发送负反馈和正反馈信号,但 HCs 如何启动这些信号尚不清楚。不幸的是,由于 HCs 没有独特的神经递质受体,因此没有药理学方法可以专门扰乱 HCs 的膜电位。在这里,我们使用表达外来受体的转基因斑马鱼,这些受体使我们能够使用同源的外来激动剂进行细胞类型特异性控制。为了去极化 HCs,我们使用了由无脊椎动物神经肽 FMRFamide 激活的 Phe-Met-Arg-Phe-amide (FMRFamide)-门控 Na 通道 (FaNaC)。为了超极化 HCs,我们使用了药理学选择性致动器模块 (PSAM)-甘氨酸受体 (GlyR),这是一种由合成激动剂激活的工程 Cl 选择性通道。FaNaC 或 PSAM-GlyR 的表达受连接蛋白-55.5 的细胞类型特异性启动子限制。我们通过三种方式评估了 HCs 对感光器突触的反馈控制。首先,我们使用荧光染料 FM1-43 测量从感光器末端的突触前胞吐作用。其次,我们测量了视网膜电图 (ERG) b 波,这是由突触后反应产生的信号。第三,我们在表达 Ca 指示剂 GCaMP6 的视网膜神经节细胞 (RGCs) 中使用 Ca 成像。FMRFamide 的添加显著减少了黑暗中 FM1-43 的脱染色,而 PSAM-GlyR 的添加则显著增加了它。然而,两种激动剂都降低了光引发的 ERG b 波,并消除了 RGCs Ca 反应的环绕抑制。总之,我们的研究结果表明,化学遗传工具可以选择性地操纵 HCs 的负反馈,为理解其机制提供了一个平台,并有助于阐明其在视觉信息处理的一系列下游阶段中的功能作用。