Suppr超能文献

一种用于皮质表面功能磁共振成像数据分析的贝叶斯广义线性建模方法。

A Bayesian General Linear Modeling Approach to Cortical Surface fMRI Data Analysis.

作者信息

Mejia Amanda F, Yue Yu Ryan, Bolin David, Lindgren Finn, Lindquist Martin A

机构信息

Indiana University, Bloomington, IN 47405.

Baruch College, The City University of New York, New York, NY 10010.

出版信息

J Am Stat Assoc. 2020;115(530):501-520. doi: 10.1080/01621459.2019.1611582. Epub 2019 Jun 12.

Abstract

Cortical surface fMRI (cs-fMRI) has recently grown in popularity versus traditional volumetric fMRI. In addition to offering better whole-brain visualization, dimension reduction, removal of extraneous tissue types, and improved alignment of cortical areas across subjects, it is also more compatible with common assumptions of Bayesian spatial models. However, as no spatial Bayesian model has been proposed for cs-fMRI data, most analyses continue to employ the classical general linear model (GLM), a "massive univariate" approach. Here, we propose a spatial Bayesian GLM for cs-fMRI, which employs a class of sophisticated spatial processes to model latent activation fields. We make several advances compared with existing spatial Bayesian models for volumetric fMRI. First, we use integrated nested Laplacian approximations (INLA), a highly accurate and efficient Bayesian computation technique, rather than variational Bayes (VB). To identify regions of activation, we utilize an excursions set method based on the joint posterior distribution of the latent fields, rather than the marginal distribution at each location. Finally, we propose the first multi-subject spatial Bayesian modeling approach, which addresses a major gap in the existing literature. The methods are very computationally advantageous and are validated through simulation studies and two task fMRI studies from the Human Connectome Project.

摘要

与传统的容积功能磁共振成像(v-fMRI)相比,皮质表面功能磁共振成像(cs-fMRI)最近越来越受欢迎。除了能提供更好的全脑可视化、降维、去除无关组织类型以及改善不同受试者皮质区域的对齐外,它还更符合贝叶斯空间模型的常见假设。然而,由于尚未针对cs-fMRI数据提出空间贝叶斯模型,大多数分析仍继续采用经典的一般线性模型(GLM),即一种“大规模单变量”方法。在此,我们提出了一种用于cs-fMRI的空间贝叶斯GLM,它采用一类复杂的空间过程来对潜在激活场进行建模。与现有的用于容积功能磁共振成像的空间贝叶斯模型相比,我们取得了多项进展。首先,我们使用积分嵌套拉普拉斯近似(INLA),这是一种高度准确且高效的贝叶斯计算技术,而不是变分贝叶斯(VB)。为了识别激活区域,我们利用基于潜在场联合后验分布的游程集方法,而不是每个位置的边际分布。最后,我们提出了第一种多受试者空间贝叶斯建模方法,填补了现有文献中的一个主要空白。这些方法在计算上非常有利,并通过模拟研究和来自人类连接体项目的两项任务功能磁共振成像研究进行了验证。

相似文献

8
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.

引用本文的文献

6
Spatial confidence regions for combinations of excursion sets in image analysis.图像分析中偏移集组合的空间置信区域。
J R Stat Soc Series B Stat Methodol. 2023 Sep 21;86(1):177-193. doi: 10.1093/jrsssb/qkad104. eCollection 2024 Feb.
10
Score-Driven Modeling of Spatio-Temporal Data.时空数据的分数驱动建模
J Am Stat Assoc. 2023 Apr 3;118(542):1066-1077. doi: 10.1080/01621459.2021.1970571. Epub 2021 Oct 4.

本文引用的文献

1
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.
3
Zen and the art of multiple comparisons.《禅与多重比较的艺术》
Psychosom Med. 2015 Feb-Mar;77(2):114-25. doi: 10.1097/PSY.0000000000000148.
5
The WU-Minn Human Connectome Project: an overview.《WU-Minn 人类连接组计划:概述》。
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
7
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
9
FreeSurfer.FreeSurfer。
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.
10
Estimating and testing variance components in a multi-level GLM.在多层 GLM 中估计和检验方差分量。
Neuroimage. 2012 Jan 2;59(1):490-501. doi: 10.1016/j.neuroimage.2011.07.077. Epub 2011 Jul 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验