Suppr超能文献

一种基于手部肌肉协同作用确定个体年龄组的新方法。

A Novel Method for Individual Age Group Determination Based on the Hand Muscle Synergy.

作者信息

Maghsoudi Arash, Rahatabad Fereidoon Nowshiravan, Rangraz Parisa

机构信息

Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

J Med Signals Sens. 2020 Jul 3;10(3):185-195. doi: 10.4103/jmss.JMSS_49_19. eCollection 2020 Jul-Sep.

Abstract

BACKGROUND

As people get older, muscles become more synchronized and cooperate to accomplish an activity, so the main purpose of this research is to determine the relationship between changes in age and the amount of muscle synergy. The presence of muscle synergies has been long considered in the movement control as a mechanism for reducing the degree of freedom of the motor system.

METHODS

By combining these synergies, a wide range of complex movements can be produced. Muscle synergies are often extracted from the electromyogram (EMG) signal. One of the most common methods for extracting synergies is the nonnegative matrix factorization. In this research, the EMG signal is obtained from individuals from different age groups (namely 15-20 years, 25-30 years, and 35-40 years), and after preprocessing, the muscular synergies are extracted. By processing and studying these synergies.

RESULTS

It was observed that there is a significant difference between the muscular synergy of different age groups. Furthermore, there was a significant difference in the mean value of synergy coefficients in each group, especially in motions that were accompanied by force.

CONCLUSION

This result candidates this parameter as a biomarker to differentiate and recognize the effects of age on the individual's muscular signal. In the best case, using the synergy tool, classification of the age of persons can be done by 77%.

摘要

背景

随着人们年龄的增长,肌肉变得更加协调并协同完成一项活动,因此本研究的主要目的是确定年龄变化与肌肉协同作用量之间的关系。在运动控制中,长期以来一直认为肌肉协同作用是一种减少运动系统自由度的机制。

方法

通过组合这些协同作用,可以产生各种各样的复杂运动。肌肉协同作用通常从肌电图(EMG)信号中提取。提取协同作用最常用的方法之一是非负矩阵分解。在本研究中,从不同年龄组(即15 - 20岁、25 - 30岁和35 - 40岁)的个体获取EMG信号,经过预处理后,提取肌肉协同作用。通过对这些协同作用进行处理和研究。

结果

观察到不同年龄组的肌肉协同作用存在显著差异。此外,每组协同系数的平均值也存在显著差异,特别是在伴有力量的运动中。

结论

该结果使这个参数有望成为区分和识别年龄对个体肌肉信号影响的生物标志物。在最佳情况下,使用协同作用工具,可以对77%的人的年龄进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adde/7528989/6d2d0a64f100/JMSS-10-185-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验