Suppr超能文献

通过具有可微直方图的伪3D循环生成对抗网络实现MRI到C型臂脊柱配准。

MRI to C-arm spine registration through Pseudo-3D CycleGANs with differentiable histograms.

作者信息

Oulbacha Reda, Kadoury Samuel

机构信息

MedICAL Laboratory, Polytechnique Montreal, Quebec, Montreal, H3T 1J4, Canada.

CHU Sainte-Justine Research Center, Quebec, Montreal, H3T 1C5, Canada.

出版信息

Med Phys. 2020 Dec;47(12):6319-6333. doi: 10.1002/mp.14534. Epub 2020 Nov 2.

Abstract

PURPOSE

Image-guided spine surgery increasingly relies on diagnostic MRI for device navigation, as it allows to visualize the nerves and soft tissues during screw insertion in the pedicle region, which is not possible with preoperative CT or cone beam CT. However, registration of MRI to C-arm images remains difficult due to differences in visible tissue.

METHODS

In this paper, we introduce a three-dimensional/two-dimensional (3D/2D) registration method of preoperative T2-weighted MRI of the lumbar spine to C-arm X-ray using synthetic CT images. The registration work is based on a pseudo-3D CycleGAN integrating a new cyclic loss function to ensure consistency in MRI and CT synthesis using differentiable histograms to match the multimodal distributions. The unified framework allows to improve bony tissue inference as opposed to regular 2D CycleGAN for image synthesis. A multiplanar digitally reconstructed radiograph (DRR) registration approach aligns the 3D and 2D images.

RESULTS

Experiments performed on a public dataset of 18 pathological spines yielded a mean dice coefficient of 0.84 ± 0.015 on synthetic CTs. The DRR registration experiments, on the other hand, presented a target localization error of 2.1 ± 0.2mm.

CONCLUSION

Intensity distributions and voxel-wise errors in Hounsfield units show encouraging results, illustrating the network's flexibility of producing qualitatively and quantitatively reasonable synthetic CT scans that can be used in a surgical 3D/2D registration framework. These promising results demonstrate the potential of the synthesis tool prior to integration in an image-guidance system.

摘要

目的

图像引导脊柱手术越来越依赖于诊断性磁共振成像(MRI)进行器械导航,因为它能够在椎弓根区域拧入螺钉时可视化神经和软组织,而术前计算机断层扫描(CT)或锥形束CT则无法做到这一点。然而,由于可见组织的差异,将MRI与C形臂图像进行配准仍然很困难。

方法

在本文中,我们介绍了一种使用合成CT图像将腰椎术前T2加权MRI与C形臂X射线进行三维/二维(3D/2D)配准的方法。配准工作基于一个伪3D循环生成对抗网络(CycleGAN),该网络集成了一个新的循环损失函数,以确保在MRI和CT合成中保持一致性,使用可微直方图来匹配多模态分布。与用于图像合成的常规二维CycleGAN相比,统一框架允许改进骨组织推断。一种多平面数字重建X线片(DRR)配准方法用于对齐3D和2D图像。

结果

在一个包含18个病理性脊柱的公共数据集上进行的实验,在合成CT上得到的平均骰子系数为0.84±0.015。另一方面,DRR配准实验的目标定位误差为2.1±0.2mm。

结论

亨氏单位中的强度分布和体素级误差显示出令人鼓舞的结果,说明了该网络在生成定性和定量合理的合成CT扫描方面的灵活性,这些扫描可用于手术3D/2D配准框架。这些有前景的结果证明了该合成工具在集成到图像引导系统之前的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验