Ku Ping-Cheng, Liu Mingxu, Grupp Robert, Harris Andrew, Oni Julius K, Mears Simon C, Martin-Gomez Alejandro, Armand Mehran
Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
Department of Orthopaedic Surgery, Johns Hopkins Medicine, Baltimore, MD, 21224, USA.
Int J Comput Assist Radiol Surg. 2025 May 30. doi: 10.1007/s11548-025-03426-w.
Soft tissue pathologies and bone defects are not easily visible in intra-operative fluoroscopic images; therefore, we develop an end-to-end MRI-to-fluoroscopic image registration framework, aiming to enhance intra-operative visualization for surgeons during orthopedic procedures.
The proposed framework utilizes deep learning to segment MRI scans and generate synthetic CT (sCT) volumes. These sCT volumes are then used to produce digitally reconstructed radiographs (DRRs), enabling 2D/3D registration with intra-operative fluoroscopic images. The framework's performance was validated through simulation and cadaver studies for core decompression (CD) surgery, focusing on the registration accuracy of femur and pelvic regions.
The framework achieved a mean translational registration accuracy of 2.4 ± 1.0 mm and rotational accuracy of 1.6 ± for the femoral region in cadaver studies. The method successfully enabled intra-operative visualization of necrotic lesions that were not visible on conventional fluoroscopic images, marking a significant advancement in image guidance for femur and pelvic surgeries.
The MRI-to-fluoroscopic registration framework offers a novel approach to image guidance in orthopedic surgeries, exclusively using MRI without the need for CT scans. This approach enhances the visualization of soft tissues and bone defects, reduces radiation exposure, and provides a safer, more effective alternative for intra-operative surgical guidance.
软组织病变和骨缺损在术中透视图像中不易显现;因此,我们开发了一种端到端的磁共振成像(MRI)到透视图像配准框架,旨在在骨科手术中增强外科医生的术中可视化效果。
所提出的框架利用深度学习对MRI扫描进行分割并生成合成CT(sCT)容积。然后使用这些sCT容积生成数字重建射线照片(DRR),从而实现与术中透视图像的二维/三维配准。通过针对核心减压(CD)手术的模拟和尸体研究验证了该框架的性能,重点关注股骨和骨盆区域的配准精度。
在尸体研究中,该框架在股骨区域实现了平均平移配准精度为2.4±1.0毫米,旋转精度为1.6±。该方法成功实现了术中对传统透视图像上不可见的坏死病变的可视化,标志着股骨和骨盆手术图像引导方面的重大进展。
MRI到透视配准框架为骨科手术中的图像引导提供了一种新方法,仅使用MRI而无需CT扫描。这种方法增强了软组织和骨缺损的可视化效果,减少了辐射暴露,并为术中手术引导提供了一种更安全、更有效的替代方案。