Suppr超能文献

用于脊柱手术中椎骨定位的真实 C 臂到 pCT 配准:一种用于术中椎骨位姿估计的混合 3D-2D 配准框架。

Realistic C-arm to pCT registration for vertebral localization in spine surgery : A hybrid 3D-2D registration framework for intraoperative vertebral pose estimation.

机构信息

Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

出版信息

Med Biol Eng Comput. 2022 Aug;60(8):2271-2289. doi: 10.1007/s11517-022-02600-5. Epub 2022 Jun 10.

Abstract

Spine surgeries are vulnerable to wrong-level surgeries and postoperative complications because of their complex structure. Unavailability of the 3D intraoperative imaging device, low-contrast intraoperative X-ray images, variable clinical and patient conditions, manual analyses, lack of skilled technicians, and human errors increase the chances of wrong-site or wrong-level surgeries. State of the art work refers 3D-2D image registration systems and other medical image processing techniques to address the complications associated with spine surgeries. Intensity-based 3D-2D image registration systems had been widely practiced across various clinical applications. However, these frameworks are limited to specific clinical conditions such as anatomy, dimension of image correspondence, and imaging modalities. Moreover, there are certain prerequisites for these frameworks to function in clinical application, such as dataset requirement, speed of computation, requirement of high-end system configuration, limited capture range, and multiple local maxima. A simple and effective registration framework was designed with a study objective of vertebral level identification and its pose estimation from intraoperative fluoroscopic images by combining intensity-based and iterative control point (ICP)-based 3D-2D registration. A hierarchical multi-stage registration framework was designed that comprises coarse and finer registration. The coarse registration was performed in two stages, i.e., intensity similarity-based spatial localization and source-to-detector localization based on the intervertebral distance correspondence between vertebral centroids in projected and intraoperative X-ray images. Finally, to speed up target localization in the intraoperative application, based on 3D-2D vertebral centroid correspondence, a rigid ICP-based finer registration was performed. The mean projection distance error (mPDE) measurement and visual similarity between projection image at finer registration point and intraoperative X-ray image and surgeons' feedback were held accountable for the quality assurance of the designed registration framework. The average mPDE after peak signal to noise ratio (PSNR)-based coarse registration was 20.41mm. After the coarse registration in spatial region and source to detector direction, the average mPDE reduced to 12.18mm. On finer ICP-based registration, the mean mPDE was finally reduced to 0.36 mm. The approximate mean time required for the coarse registration, finer registration, and DRR image generation at the final registration point were 10 s, 15 s, and 1.5 min, respectively. The designed registration framework can act as a supporting tool for vertebral level localization and its pose estimation in an intraoperative environment. The framework was designed with the future perspective of intraoperative target localization and its pose estimation irrespective of the target anatomy.

摘要

脊柱手术由于其复杂的结构,容易出现手术部位错误和术后并发症。由于缺乏术中三维成像设备、术中 X 射线图像对比度低、临床和患者情况多变、手动分析、缺乏熟练的技术人员以及人为错误,增加了手术部位或手术水平错误的机会。最新研究工作提到了 3D-2D 图像配准系统和其他医学图像处理技术,以解决与脊柱手术相关的并发症。基于强度的 3D-2D 图像配准系统已广泛应用于各种临床应用。然而,这些框架仅限于特定的临床条件,如解剖结构、图像对应维度和成像方式。此外,这些框架在临床应用中还需要满足一些前提条件,如数据集要求、计算速度、高端系统配置要求、有限的捕获范围和多个局部最大值。本研究设计了一个简单而有效的配准框架,旨在通过结合基于强度和迭代控制点(ICP)的 3D-2D 配准,从术中透视图像中识别和估计椎体水平及其姿态。该框架设计了一个分层多阶段配准框架,包括粗配准和精配准。粗配准分两个阶段进行,即基于强度相似性的空间定位和基于椎体中心点在投影和术中 X 射线图像中椎间距离对应关系的源到探测器定位。最后,为了加快术中目标定位速度,基于 3D-2D 椎体中心点对应关系,进行了基于刚性 ICP 的更精细的配准。设计的配准框架的质量保证由平均投影距离误差(mPDE)测量、投影图像在更精细的配准点处与术中 X 射线图像之间的视觉相似性以及外科医生的反馈来衡量。基于峰值信噪比(PSNR)的粗配准后,平均 mPDE 为 20.41mm。在空间区域和源到探测器方向进行粗配准后,平均 mPDE 降低到 12.18mm。在更精细的基于 ICP 的配准中,平均 mPDE 最终降低到 0.36mm。最终配准点处粗配准、细配准和 DRR 图像生成的平均大致时间分别为 10s、15s 和 1.5min。设计的配准框架可以作为术中环境下椎体定位及其姿态估计的辅助工具。该框架的设计着眼于未来的术中目标定位及其姿态估计,而不考虑目标解剖结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/9294032/d05d0b200904/11517_2022_2600_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验