Suppr超能文献

一种新的与 DNA 修复相关的列线图预测低级别胶质瘤的生存情况。

A novel DNA repair-related nomogram predicts survival in low-grade gliomas.

机构信息

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

CNS Neurosci Ther. 2021 Feb;27(2):186-195. doi: 10.1111/cns.13464. Epub 2020 Oct 16.

Abstract

AIMS

We aimed to create a tumor recurrent-based prediction model to predict recurrence and survival in patients with low-grade glioma.

METHODS

This study enrolled 291 patients (188 in the training group and 103 in the validation group) with clinicopathological information and transcriptome sequencing data. LASSO-COX algorithm was applied to shrink predictive factor size and build a predictive recurrent signature. GO, KEGG, and GSVA analyses were performed for function annotations of the recurrent signature. The calibration curves and C-Index were assessed to evaluate the nomogram's performance.

RESULTS

This study found that DNA repair functions of tumor cells were significantly enriched in recurrent low-grade gliomas. A predictive recurrent signature, built by the LASSO-COX algorithm, was significantly associated with overall survival and progression-free survival in low-grade gliomas. Moreover, function annotations analysis of the predictive recurrent signature exhibited that the signature was associated with DNA repair functions. The nomogram, combining the predictive recurrent signature and clinical prognostic predictors, showed powerful prognostic ability in the training and validation groups.

CONCLUSION

An individualized prediction model was created to predict 1-, 2-, 3-, 5-, and 10-year survival and recurrent rate of patients with low-grade glioma, which may serve as a potential tool to guide postoperative individualized care.

摘要

目的

本研究旨在建立基于肿瘤复发的预测模型,以预测低级别胶质瘤患者的复发和生存情况。

方法

本研究纳入了 291 名具有临床病理信息和转录组测序数据的患者(训练组 188 例,验证组 103 例)。采用 LASSO-COX 算法对预测因素进行收缩,构建预测复发的特征签名。对复发特征签名进行 GO、KEGG 和 GSVA 分析,以进行功能注释。通过绘制校准曲线和 C-指数评估列线图的性能。

结果

本研究发现,肿瘤细胞的 DNA 修复功能在复发性低级别胶质瘤中显著富集。由 LASSO-COX 算法构建的预测复发特征签名与低级别胶质瘤的总生存和无进展生存显著相关。此外,预测复发特征签名的功能注释分析表明,该特征签名与 DNA 修复功能相关。列线图结合预测复发特征签名和临床预后预测因子,在训练组和验证组中均显示出强大的预后能力。

结论

本研究构建了一种个体化预测模型,用于预测低级别胶质瘤患者的 1 年、2 年、3 年、5 年和 10 年生存率和复发率,可能成为指导术后个体化治疗的潜在工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验