Rakowski Michał, Grzelak Agnieszka
Uniwersytet Łódzki / University of Lodz, Łódź, Poland (Szkoła Doktorska BioMedChem Uniwersytetu Łódzkiego i Instytutów Polskiej Akademii Nauk w Łodzi / The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences).
Uniwersytet Łódzki / University of Lodz, Łódź, Poland (Wydział Biologii i Ochrony Środowiska, Katedra Biofizyki Molekularnej / Faculty of Biology and Environmental Protection, Department of Molecular Biophysics).
Med Pr. 2020 Dec 3;71(6):743-756. doi: 10.13075/mp.5893.00990. Epub 2020 Oct 7.
Problems arising from the accumulation of plastic waste in the environment have become global. Appeals to stop the usage of disposable drinking straws or plastic cutlery did not come out without reason - 320 million tons of plastic products are produced annually, of which 40% are disposable items. More and more countries and private enterprises are giving up these types of items in favor of their biodegradable substitutes, e.g., cardboard drinking straws. Plastic waste in the environment is subject to a number of physicochemical interactions and biodegradation in which bacteria are involved. By using synthetic waste, they reduce the size of plastic garbage while increasing its dispersion in the environment. Small plastic particles, invisible to the naked eye, are called nanoplastic. Nanoplastic is not inert to living organisms. Due to its size, it is taken up with food by animals and passed on in the trophic chain. The ability to penetrate the body's barriers through nanoplastic leads to the induction of biological effects with various outcomes. Research studies on the interaction of nanoplastic with living organisms are carried out in many laboratories; however, their number is still a drop in the ocean of the data needed to draw clear-cut conclusions about the impact of nanoplastic on living organisms. There is also no data on the direct exposure to nanoplastic contamination at workplaces, schools and public utilities, standards describing the acceptable concentration of nanoplastic in food products and drinking water, and tests on nanoparticles other than polystyrene nanoparticles. Complementing the existing data will allow assessing the risks arising from the exposure of organisms to nanoplastic. Med Pr. 2020;71(6):743-56.
环境中塑料垃圾堆积所引发的问题已成为全球性问题。呼吁停止使用一次性吸管或塑料餐具并非毫无缘由——每年生产3.2亿吨塑料制品,其中40%是一次性用品。越来越多的国家和民营企业正放弃这类物品,转而青睐可生物降解的替代品,例如纸质吸管。环境中的塑料垃圾会经历多种物理化学相互作用以及涉及细菌的生物降解过程。通过利用合成废物,它们减小了塑料垃圾的尺寸,同时增加了其在环境中的扩散。肉眼不可见的小塑料颗粒被称为纳米塑料。纳米塑料对生物体并非惰性。因其尺寸小,它会被动物随食物摄入并在食物链中传递。纳米塑料穿透人体屏障的能力会引发各种不同结果的生物效应。许多实验室都在开展关于纳米塑料与生物体相互作用的研究;然而,与得出关于纳米塑料对生物体影响的确切结论所需的数据量相比,这些研究的数量仍只是沧海一粟。目前也没有关于工作场所、学校和公共事业机构直接暴露于纳米塑料污染的相关数据,没有描述食品和饮用水中纳米塑料可接受浓度的标准,也没有针对除聚苯乙烯纳米颗粒之外的纳米颗粒的测试。补充现有数据将有助于评估生物体接触纳米塑料所产生的风险。《医学实践》。2020年;71(6):743 - 56。