Liu Yayuan, Chow Chun-Man, Phillips Katherine R, Wang Miao, Voskian Sahag, Hatton T Alan
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Adv. 2020 Oct 16;6(42). doi: 10.1126/sciadv.abc1741. Print 2020 Oct.
The regulation of mass transfer across membranes is central to a wide spectrum of applications. Despite numerous examples of stimuli-responsive membranes for liquid-phase species, this goal remains elusive for gaseous molecules. We describe a previously unexplored gas gating mechanism driven by reversible electrochemical metal deposition/dissolution on a conductive membrane, which can continuously modulate the interfacial gas permeability over two orders of magnitude with high efficiency and short response time. The gating mechanism involves neither moving parts nor dead volume and can therefore enable various engineering processes. An electrochemically mediated carbon dioxide concentrator demonstrates proof of concept by integrating the gating membranes with redox-active sorbents, where gating effectively prevented the cross-talk between feed and product gas streams for high-efficiency, directional carbon dioxide pumping. We anticipate our concept of dynamically regulating transport at gas-liquid interfaces to broadly inspire systems in fields of gas separation, miniaturized devices, multiphase reactors, and beyond.
跨膜传质的调控是众多应用的核心。尽管有许多用于液相物质的刺激响应膜的例子,但对于气态分子而言,这一目标仍然难以实现。我们描述了一种以前未被探索的气体门控机制,该机制由导电膜上可逆的电化学金属沉积/溶解驱动,能够以高效率和短响应时间连续调节界面气体渗透率达两个数量级。这种门控机制既不涉及移动部件也没有死体积,因此可以实现各种工程过程。一种电化学介导的二氧化碳浓缩器通过将门控膜与氧化还原活性吸附剂集成,展示了概念验证,其中门控有效地防止了进料气流和产物气流之间的串扰,实现了高效、定向的二氧化碳泵送。我们预计,我们在气液界面动态调节传输的概念将广泛启发气体分离、小型化设备、多相反应器等领域的系统。