Suppr超能文献

具有动态可控气体传输的电化学介导门控膜

Electrochemically mediated gating membrane with dynamically controllable gas transport.

作者信息

Liu Yayuan, Chow Chun-Man, Phillips Katherine R, Wang Miao, Voskian Sahag, Hatton T Alan

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Sci Adv. 2020 Oct 16;6(42). doi: 10.1126/sciadv.abc1741. Print 2020 Oct.

Abstract

The regulation of mass transfer across membranes is central to a wide spectrum of applications. Despite numerous examples of stimuli-responsive membranes for liquid-phase species, this goal remains elusive for gaseous molecules. We describe a previously unexplored gas gating mechanism driven by reversible electrochemical metal deposition/dissolution on a conductive membrane, which can continuously modulate the interfacial gas permeability over two orders of magnitude with high efficiency and short response time. The gating mechanism involves neither moving parts nor dead volume and can therefore enable various engineering processes. An electrochemically mediated carbon dioxide concentrator demonstrates proof of concept by integrating the gating membranes with redox-active sorbents, where gating effectively prevented the cross-talk between feed and product gas streams for high-efficiency, directional carbon dioxide pumping. We anticipate our concept of dynamically regulating transport at gas-liquid interfaces to broadly inspire systems in fields of gas separation, miniaturized devices, multiphase reactors, and beyond.

摘要

跨膜传质的调控是众多应用的核心。尽管有许多用于液相物质的刺激响应膜的例子,但对于气态分子而言,这一目标仍然难以实现。我们描述了一种以前未被探索的气体门控机制,该机制由导电膜上可逆的电化学金属沉积/溶解驱动,能够以高效率和短响应时间连续调节界面气体渗透率达两个数量级。这种门控机制既不涉及移动部件也没有死体积,因此可以实现各种工程过程。一种电化学介导的二氧化碳浓缩器通过将门控膜与氧化还原活性吸附剂集成,展示了概念验证,其中门控有效地防止了进料气流和产物气流之间的串扰,实现了高效、定向的二氧化碳泵送。我们预计,我们在气液界面动态调节传输的概念将广泛启发气体分离、小型化设备、多相反应器等领域的系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b7/7567586/2908eca4848b/abc1741-F2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验