Suppr超能文献

结构多样的异生物质单体的前生物低聚化和自组装。

Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers.

机构信息

Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.

Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague 6-Dejvice, Czech Republic.

出版信息

Sci Rep. 2020 Oct 16;10(1):17560. doi: 10.1038/s41598-020-74223-5.

Abstract

Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis. However, life may not have originated using the same monomeric components that it does presently. There may be numerous non-biological (or "xenobiological") monomer types that were prebiotically abundant and capable of facile oligomerization and self-assembly. Many modern biopolymers degrade abiotically preferentially via processes which produce thermodynamically stable ring structures, e.g. diketopiperazines in the case of proteins and 2', 3'-cyclic nucleotide monophosphates in the case of RNA. This weakness is overcome in modern biological systems by kinetic control, but this need not have been the case for primitive systems. We explored here the oligomerization of a structurally diverse set of prebiotically plausible xenobiological monomers, which can hydrolytically interconvert between cyclic and acyclic forms, alone or in the presence of glycine under moderate temperature drying conditions. These monomers included various lactones, lactams and a thiolactone, which varied markedly in their stability, propensity to oligomerize and apparent modes of initiation, and the oligomeric products of some of these formed self-organized microscopic structures which may be relevant to protocell formation.

摘要

生化学家经常研究现代生物聚合物(例如肽和核酸)如何在原始环境中起源,尽管大多数当代生物单体在没有激活或催化的温和条件下不会自发地聚合。然而,生命的起源可能并不使用与现在相同的单体成分。可能有许多非生物(或“异源生物”)的单体类型在原始环境中丰富存在,并且能够轻易地聚合和自组装。许多现代生物聚合物通过产生热力学稳定的环状结构的非生物降解途径优先降解,例如蛋白质中的二酮哌嗪和 RNA 中的 2',3'-环核苷酸单磷酸。现代生物系统通过动力学控制克服了这一弱点,但原始系统不一定需要这样。我们在这里探索了一组结构多样的异源生物 plausib le 单体的聚合,这些单体可以在温和的温度干燥条件下单独或在甘氨酸存在下通过水解相互转化为环状和无环形式。这些单体包括各种内酯、内酰胺和硫内酯,它们在稳定性、聚合倾向和明显的引发模式方面差异很大,其中一些单体的寡聚物形成了自组织的微观结构,这可能与原细胞的形成有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/637d/7567815/083eb9f96cf7/41598_2020_74223_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验