Suppr超能文献

性别二态性放射基因组学模型确定了与胶质母细胞瘤总生存期相关的不同影像学和生物学途径。

Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma.

机构信息

Case Western Reserve University, Cleveland, Ohio, USA.

Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA.

出版信息

Neuro Oncol. 2021 Feb 25;23(2):251-263. doi: 10.1093/neuonc/noaa231.

Abstract

BACKGROUND

Recent epidemiological studies have suggested that sexual dimorphism influences treatment response and prognostic outcome in glioblastoma (GBM). To this end, we sought to (i) identify distinct sex-specific radiomic phenotypes-from tumor subcompartments (peritumoral edema, enhancing tumor, and necrotic core) using pretreatment MRI scans-that are prognostic of overall survival (OS) in GBMs, and (ii) investigate radiogenomic associations of the MRI-based phenotypes with corresponding transcriptomic data, to identify the signaling pathways that drive sex-specific tumor biology and treatment response in GBM.

METHODS

In a retrospective setting, 313 GBM patients (male = 196, female = 117) were curated from multiple institutions for radiomic analysis, where 130 were used for training and independently validated on a cohort of 183 patients. For the radiogenomic analysis, 147 GBM patients (male = 94, female = 53) were used, with 125 patients in training and 22 cases for independent validation.

RESULTS

Cox regression models of radiomic features from gadolinium T1-weighted MRI allowed for developing more precise prognostic models, when trained separately on male and female cohorts. Our radiogenomic analysis revealed higher expression of Laws energy features that capture spots and ripple-like patterns (representative of increased heterogeneity) from the enhancing tumor region, as well as aggressive biological processes of cell adhesion and angiogenesis to be more enriched in the "high-risk" group of poor OS in the male population. In contrast, higher expressions of Laws energy features (which detect levels and edges) from the necrotic core with significant involvement of immune related signaling pathways was observed in the "low-risk" group of the female population.

CONCLUSIONS

Sexually dimorphic radiogenomic models could help risk-stratify GBM patients for personalized treatment decisions.

摘要

背景

最近的流行病学研究表明,性别二态性影响胶质母细胞瘤(GBM)的治疗反应和预后结果。为此,我们试图(i)从预处理 MRI 扫描中识别出肿瘤亚区(瘤周水肿、增强肿瘤和坏死核心)中独特的性别特异性放射组学表型,这些表型对 GBM 的总生存期(OS)具有预后意义,以及(ii)研究基于 MRI 的表型与相应转录组数据的放射基因组关联,以确定驱动 GBM 中性别特异性肿瘤生物学和治疗反应的信号通路。

方法

在回顾性研究中,从多个机构中筛选了 313 名 GBM 患者(男性=196 名,女性=117 名)进行放射组学分析,其中 130 名用于训练,并在独立的 183 名患者队列中进行验证。对于放射基因组分析,使用了 147 名 GBM 患者(男性=94 名,女性=53 名),其中 125 名用于训练,22 名用于独立验证。

结果

基于钆增强 T1 加权 MRI 的放射组学特征的 Cox 回归模型允许分别在男性和女性队列中进行训练,从而建立更精确的预后模型。我们的放射基因组分析显示,增强肿瘤区域中 Laws 能量特征(代表更高的异质性)的表达更高,以及细胞黏附和血管生成等侵袭性生物学过程在男性人群中 OS 较差的“高危”组中更为丰富。相比之下,在女性人群的“低危”组中,坏死核心中 Laws 能量特征(检测水平和边缘)的表达更高,并且涉及到免疫相关信号通路。

结论

性别二态性放射基因组模型可以帮助 GBM 患者进行风险分层,以做出个性化的治疗决策。

相似文献

引用本文的文献

2
Radiomics in glioma: emerging trends and challenges.神经胶质瘤中的放射组学:新趋势与挑战
Ann Clin Transl Neurol. 2025 Mar;12(3):460-477. doi: 10.1002/acn3.52306. Epub 2025 Feb 3.
3
Segmentation of glioblastomas via 3D FusionNet.通过3D融合网络对胶质母细胞瘤进行分割
Front Oncol. 2024 Nov 15;14:1488616. doi: 10.3389/fonc.2024.1488616. eCollection 2024.
8
Towards equitable AI in oncology.迈向肿瘤学领域的公平人工智能。
Nat Rev Clin Oncol. 2024 Aug;21(8):628-637. doi: 10.1038/s41571-024-00909-8. Epub 2024 Jun 7.

本文引用的文献

1
Sex differences in oncogenic mutational processes.致癌突变过程中的性别差异。
Nat Commun. 2020 Aug 28;11(1):4330. doi: 10.1038/s41467-020-17359-2.
6
Emerging Applications of Artificial Intelligence in Neuro-Oncology.人工智能在神经肿瘤学中的新兴应用。
Radiology. 2019 Mar;290(3):607-618. doi: 10.1148/radiol.2018181928. Epub 2019 Jan 22.
7
Glioblastoma: Microenvironment and Niche Concept.胶质母细胞瘤:微环境与生态位概念
Cancers (Basel). 2018 Dec 20;11(1):5. doi: 10.3390/cancers11010005.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验