Suppr超能文献

生物标志物磁共振成像表型在 IDH 野生型胶质母细胞瘤风险分层中的作用。

Biological underpinnings of radiomic magnetic resonance imaging phenotypes for risk stratification in IDH wild-type glioblastoma.

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.

Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.

出版信息

J Transl Med. 2023 Nov 22;21(1):841. doi: 10.1186/s12967-023-04551-3.

Abstract

BACKGROUND

To develop and validate a conventional MRI-based radiomic model for predicting prognosis in patients with IDH wild-type glioblastoma (GBM) and reveal the biological underpinning of the radiomic phenotypes.

METHODS

A total of 801 adult patients (training set, N = 471; internal validation set, N = 239; external validation set, N = 91) diagnosed with IDH wild-type GBM were included. A 20-feature radiomic risk score (Radscore) was built for overall survival (OS) prediction by univariate prognostic analysis and least absolute shrinkage and selection operator (LASSO) Cox regression in the training set. GSEA and WGCNA were applied to identify the intersectional pathways underlying the prognostic radiomic features in a radiogenomic analysis set with paired MRI and RNA-seq data (N = 132). The biological meaning of the conventional MRI sequences was revealed using a Mantel test.

RESULTS

Radscore was demonstrated to be an independent prognostic factor (P < 0.001). Incorporating the Radscore into a clinical model resulted in a radiomic-clinical nomogram predicting survival better than either the Radscore model or the clinical model alone, with better calibration and classification accuracy (a total net reclassification improvement of 0.403, P < 0.001). Three pathway categories (proliferation, DNA damage response, and immune response) were significantly correlated with the prognostic radiomic phenotypes.

CONCLUSION

Our findings indicated that the prognostic radiomic phenotypes derived from conventional MRI are driven by distinct pathways involved in proliferation, DNA damage response, and immunity of IDH wild-type GBM.

摘要

背景

开发和验证一种基于常规 MRI 的放射组学模型,用于预测 IDH 野生型胶质母细胞瘤(GBM)患者的预后,并揭示放射组学表型的生物学基础。

方法

共纳入 801 名 IDH 野生型 GBM 成年患者(训练集,N=471;内部验证集,N=239;外部验证集,N=91)。通过单因素预后分析和最小绝对值收缩和选择算子(LASSO)Cox 回归,在训练集中构建了 20 个特征的放射组学风险评分(Radscore),用于预测总生存期(OS)。在具有配对 MRI 和 RNA-seq 数据的放射基因组学分析集中(N=132),应用 GSEA 和 WGCNA 来识别与预后放射组学特征相关的交集途径。使用 Mantel 检验揭示常规 MRI 序列的生物学意义。

结果

Radscore 被证明是一个独立的预后因素(P<0.001)。将 Radscore 纳入临床模型可使生存预测优于 Radscore 模型或临床模型单独使用的放射临床列线图,具有更好的校准和分类准确性(总净重新分类改善 0.403,P<0.001)。三个途径类别(增殖、DNA 损伤反应和免疫反应)与预后放射组学表型显著相关。

结论

我们的研究结果表明,源自常规 MRI 的预后放射组学表型由涉及 IDH 野生型 GBM 增殖、DNA 损伤反应和免疫的不同途径驱动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063a/10664532/b59cadd3ac0a/12967_2023_4551_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验