Suppr超能文献

应用介入前分流量储备回撤曲线的自动化算法预测介入后生理结果。

Automated Algorithm Using Pre-Intervention Fractional Flow Reserve Pullback Curve to Predict Post-Intervention Physiological Results.

机构信息

Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.

出版信息

JACC Cardiovasc Interv. 2020 Nov 23;13(22):2670-2684. doi: 10.1016/j.jcin.2020.06.062. Epub 2020 Oct 14.

Abstract

OBJECTIVES

This study sought to develop an automated algorithm using pre-percutaneous coronary intervention (PCI) fractional flow reserve (FFR) pullback recordings to predict post-PCI physiological results in the pre-PCI phase.

BACKGROUND

Both FFR and percent FFR increase measured after PCI showed incremental prognostic implications. However, there is no current method to predict post-PCI physiological results using physiological assessment in the pre-PCI phase.

METHODS

An automated algorithm that analyzes instantaneous FFR gradient per unit time (dFFR(t)/dt) was developed from the derivation cohort (n = 30). Using dFFR(t)/dt, the pattern of atherosclerotic disease in each patient was classified into 3 groups (major, mixed, and minor FFR gradient groups) in both the internal validation cohort with constant pullback method (n = 234) and the external validation cohort with nonstandardized pullback methods (n = 252). All patients in the validation cohorts underwent PCI on the basis of pre-PCI FFR ≤0.80. Suboptimal post-PCI physiological results were defined as both post-PCI FFR <0.84 and percent FFR increase ≤15%. From the derivation cohort, cutoffs of dFFR(t)/dt for major and minor FFR gradient were 0.035/s and 0.015/s, respectively.

RESULTS

In validation cohorts, dFFR(t)/dt showed significant correlations with percent FFR increase (R = 0.801; p < 0.001) and post-PCI FFR (R = 0.099; p = 0.029). In both the internal and external validation cohorts, the major FFR gradient group showed significantly higher post-PCI FFR and percent FFR increase compared with those in the mixed or minor FFR gradient groups (all p values <0.001). The proportions of suboptimal post-PCI physiological results were significantly different among 3 groups (10.4% vs. 25.8% vs. 45.7% for the major, mixed, and minor FFR gradient groups, respectively; p < 0.001) in validation cohorts. Absence of major FFR gradient lesion (odds ratio: 2.435, 95% [CI]: 1.252 to 4.734; p = 0.009) and presence of minor FFR gradient lesion (odds ratio: 2.756, 95% confidence interval: 1.629 to 4.664; p < 0.001) were independent predictors for suboptimal post-PCI physiological results.

CONCLUSIONS

The automated algorithm analyzing pre-PCI pullback curve was able to predict post-PCI physiological results. The incidence of suboptimal post-PCI physiological results was significantly different according to algorithm-based classifications in the pre-PCI physiological assessment. (Automated Algorithm Detecting Physiologic Major Stenosis and Its Relationship with Post-PCI Clinical Outcomes [Algorithm-PCI]; NCT04304677).

摘要

目的

本研究旨在开发一种基于经皮冠状动脉介入治疗(PCI)前血流储备分数(FFR)拖曳记录的自动算法,以在 PCI 前阶段预测 PCI 后的生理结果。

背景

PCI 后测量的 FFR 和 FFR 百分比增加均显示出增量预后意义。然而,目前尚无使用 PCI 前阶段生理评估预测 PCI 后生理结果的方法。

方法

从衍生队列(n=30)中开发了一种分析单位时间内瞬时 FFR 梯度的自动算法(dFFR(t)/dt)。使用 dFFR(t)/dt,根据恒定拖曳法(n=234)和非标准化拖曳法(n=252)在内部验证队列和外部验证队列中,将每位患者的动脉粥样硬化病变分为 3 组(主要、混合和次要 FFR 梯度组)。所有验证队列的患者均根据 PCI 前 FFR≤0.80 行 PCI。定义术后生理结果不理想为 PCI 后 FFR<0.84 和 FFR 百分比增加≤15%。从衍生队列中,主要和次要 FFR 梯度的 dFFR(t)/dt 截断值分别为 0.035/s 和 0.015/s。

结果

在验证队列中,dFFR(t)/dt 与 FFR 百分比增加(R=0.801;p<0.001)和 PCI 后 FFR(R=0.099;p=0.029)呈显著相关。在内部和外部验证队列中,与混合或次要 FFR 梯度组相比,主要 FFR 梯度组的 PCI 后 FFR 和 FFR 百分比增加均显著更高(所有 p 值均<0.001)。在 3 个组之间(主要、混合和次要 FFR 梯度组的比例分别为 10.4%、25.8%和 45.7%;p<0.001),术后生理结果不理想的比例存在显著差异。不存在主要 FFR 梯度病变(比值比:2.435,95%置信区间:1.252 至 4.734;p=0.009)和存在次要 FFR 梯度病变(比值比:2.756,95%置信区间:1.629 至 4.664;p<0.001)是术后生理结果不理想的独立预测因素。

结论

分析 PCI 前拖曳曲线的自动算法能够预测 PCI 后的生理结果。根据 PCI 前生理评估中的基于算法的分类,术后生理结果不理想的发生率存在显著差异。(自动算法检测生理主要狭窄及其与 PCI 后临床结果的关系[Algorithm-PCI];NCT04304677)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验