Suppr超能文献

基于机器学习的口咽鳞癌 HPV 放射组学表型分析:MRI 可行性研究。

Machine Learning Based Radiomic HPV Phenotyping of Oropharyngeal SCC: A Feasibility Study Using MRI.

机构信息

Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea.

出版信息

Laryngoscope. 2021 Mar;131(3):E851-E856. doi: 10.1002/lary.28889. Epub 2020 Jul 13.

Abstract

OBJECTIVES

To investigate whether a radiomic MRI feature-based prediction model can differentiate oropharyngeal squamous cell carcinoma (SCC) according to the human papillomavirus (HPV) status.

STUDY DESIGN

Retrospective cohort study.

METHODS

Pretreatment MRI data from 62 consecutive patients with oropharyngeal SCC were retrospectively reviewed, and chronologically allocated to training (n = 43) and test sets (n = 19). Enhancing tumors were semi-automatically segmented on each slice of the postcontrast T1WI to span the entire tumor volume, after registration of T2WI to postcontrast T1WI; 170 radiomic features were extracted from the entire tumor volume. Relevant features were selected and radiomics models were trained using least absolute shrinkage and selection operator (LASSO) logistic regression model with 10-fold cross-validation, after subsampling of training sets using synthetic minority over-sampling technique to mitigate data imbalance. The selected features, weighted by their respective coefficients, were combined linearly to yield a radiomics score. The diagnostic performance of the radiomic score was evaluated using the area under the receiver operating characteristic curve (AUC).

RESULTS

Six radiomic features, which revealed strong association with HPV status of oropharyngeal SCC, were selected using LASSO. The radiomics model yielded excellent performance on the training set (AUC, 0.982 [95% CI, 0.942-1.000]) and moderate performance on the test set (AUC, 0.744 [95% CI, 0.496-0.991]) for differentiating oropharyngeal SCC according to HPV status.

CONCLUSIONS

Radiomics-based MRI phenotyping differentiates oropharyngeal SCC according to HPV status, and thus, is a potential imaging biomarker.

LEVEL OF EVIDENCE

3 Laryngoscope, 131:E851-E856, 2021.

摘要

目的

探究基于放射组学 MRI 特征的预测模型是否能根据人乳头瘤病毒(HPV)状态区分口咽鳞状细胞癌(SCC)。

研究设计

回顾性队列研究。

方法

回顾性分析 62 例连续的口咽 SCC 患者的预处理 MRI 数据,按照时间顺序分为训练集(n=43)和测试集(n=19)。在 T2WI 与对比后 T1WI 配准后,对每个对比后 T1WI 切片上的增强肿瘤进行半自动分割,以覆盖整个肿瘤体积;从整个肿瘤体积中提取 170 个放射组学特征。使用 10 折交叉验证的最小绝对收缩和选择算子(LASSO)逻辑回归模型选择相关特征并进行放射组学模型训练,然后使用合成少数过采样技术对训练集进行抽样,以减轻数据不平衡。选择的特征根据其各自的系数进行线性组合,得到放射组学评分。使用受试者工作特征曲线(ROC)下面积(AUC)评估放射组学评分的诊断性能。

结果

使用 LASSO 选择了与口咽 SCC 的 HPV 状态有很强关联的 6 个放射组学特征。放射组学模型在训练集上表现出优异的性能(AUC,0.982[95%CI,0.942-1.000]),在测试集上表现出中等性能(AUC,0.744[95%CI,0.496-0.991]),可根据 HPV 状态区分口咽 SCC。

结论

基于放射组学的 MRI 表型可根据 HPV 状态区分口咽 SCC,因此是一种潜在的影像学生物标志物。

证据水平

3级喉镜,131:E851-E856,2021。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验