Chalkley Matthew J, Peters Jonas C
Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
Eur J Inorg Chem. 2020 Apr 30;2020(15-16):1353-1357. doi: 10.1002/ejic.202000232. Epub 2020 Apr 9.
Nitrogen (N) fixation to produce bio-available ammonia (NH) is essential to all life but is a challenging transformation to catalyse owing to the chemical inertness of N. Transition metals can, however, bind N and activate it for functionalization. Significant opportunities remain in developing robust and efficient transition metal catalysts for the N reduction reaction (NRR). One opportunity to target in catalyst design concerns the stabilization of transition metal diazenido species (M-NNH) that result from the first N functionalization step. Well-characterized M-NNH species remain very rare, likely a consequence of their low N-H bond dissociation free energies (BDFEs). In this essay, we discuss the relationship between the BDFE of a given M-NNH species to the observed overpotential and selectivity for NRR catalysis with that catalyst system. We note that developing strategies to either increase the N-H BDFEs of M-NNH species, or to avoid M-NNH intermediates altogether, are potential routes to improved NRR efficiency.
固氮以产生生物可利用的氨(NH₃)对所有生命来说都是必不可少的,但由于氮的化学惰性,催化这种转化具有挑战性。然而,过渡金属可以结合氮并使其活化以进行官能化。在开发用于氮还原反应(NRR)的强大且高效的过渡金属催化剂方面仍有重大机遇。催化剂设计中一个值得关注的机会涉及稳定由第一步氮官能化步骤产生的过渡金属二氮烯基物种(M-NNH)。特征明确的M-NNH物种仍然非常罕见,这可能是由于它们较低的N-H键解离自由能(BDFE)所致。在本文中,我们讨论了给定M-NNH物种的BDFE与该催化剂体系催化NRR时观察到的过电位和选择性之间的关系。我们注意到开发提高M-NNH物种N-H BDFE的策略,或完全避免M-NNH中间体,是提高NRR效率的潜在途径。