Suppr超能文献

[Fe(NNR)]氧化还原系列的电子结构:配体非定域性及其对催化氮固定的影响。

Electronic Structures of an [Fe(NNR)] Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation.

机构信息

Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.

Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States.

出版信息

Inorg Chem. 2019 Mar 4;58(5):3535-3549. doi: 10.1021/acs.inorgchem.9b00133. Epub 2019 Feb 14.

Abstract

The intermediacy of metal-NNH complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N) fixation. In this context, we have shown that triphosphine-supported Fe(N) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH) complexes over an array of charge and oxidation states. Upon exposure to further H/e equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N-H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe) complexes, which serve as spectroscopic models for their reactive protonated congeners. Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the "NNMe" moiety. Specifically, although two closed-shell configurations of the "NNR" ligand have been commonly considered in the literature-isodiazene and hydrazido(2-)-we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR] ligand coupled antiferromagnetically to the Fe center. This one-electron redox noninnocence resembles that of the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N fixation activity.

摘要

金属-NNH 配合物的中间体已被牵涉到几种过渡金属介导的氮 (N) 固定催化循环中。在这种情况下,我们已经表明,三膦支持的 Fe(N) 配合物可以在一系列电荷和氧化态下在远端 N 原子处被还原和质子化,生成 Fe(NNH) 配合物。在暴露于更多的 H/e 等价物后,这些物种要么继续沿着远端型 Chatt 途径进行,生成末端铁 (IV) 氮化物,要么遵循远端到交替途径,导致近端 N 原子上形成 N-H 键。为了理解这种分歧选择性的起源,本文我们合成并阐明了一系列 Fe(NNMe) 配合物的电子结构,它们作为其反应性质子化同系物的光谱模型。我们使用了一系列光谱技术,结合密度泛函理论和相关的从头计算,证明了“NNMe”部分的单电子氧化还原非中性。具体来说,尽管文献中通常认为“NNR”配体有两种闭壳层构型——异二氮烯和肼基 (2-),但我们提供的证据表明,在其还原形式下,目前的铁配合物最好用与 Fe 中心反铁磁耦合的开壳层[NNR]配体来描述。这种单电子氧化还原非中性类似于经典的非中性配体 NO,并且可能对 N 固定活性的选择性具有机制意义。

相似文献

1
Electronic Structures of an [Fe(NNR)] Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation.
Inorg Chem. 2019 Mar 4;58(5):3535-3549. doi: 10.1021/acs.inorgchem.9b00133. Epub 2019 Feb 14.
2
Nitrogen Fixation via a Terminal Fe(IV) Nitride.
J Am Chem Soc. 2017 Nov 1;139(43):15312-15315. doi: 10.1021/jacs.7b09364. Epub 2017 Oct 19.
3
Seven Clues to Ligand Noninnocence: The Metallocorrole Paradigm.
Acc Chem Res. 2019 Jul 16;52(7):2003-2014. doi: 10.1021/acs.accounts.9b00115. Epub 2019 Jun 21.
6
N-H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe-N and Fe-CN Reductions.
J Am Chem Soc. 2017 Mar 1;139(8):3161-3170. doi: 10.1021/jacs.6b12861. Epub 2017 Feb 17.
10
Ligand Redox Noninnocence in [Co(TAML)] Complexes Affects Nitrene Formation.
J Am Chem Soc. 2020 Jan 8;142(1):552-563. doi: 10.1021/jacs.9b11715. Epub 2019 Dec 30.

引用本文的文献

1
Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and p.
J Am Chem Soc. 2023 Jul 12;145(27):14784-14792. doi: 10.1021/jacs.3c03352. Epub 2023 Jun 27.
2
Light Alters the NH vs N H Product Profile in Iron-catalyzed Nitrogen Reduction via Dual Reactivity from an Iron Hydrazido (Fe=NNH ) Intermediate.
Angew Chem Int Ed Engl. 2023 Feb 20;62(9):e202216693. doi: 10.1002/anie.202216693. Epub 2023 Jan 24.
3
Ammonia from dinitrogen at ambient conditions by organometallic catalysts.
RSC Adv. 2022 Nov 23;12(52):33567-33583. doi: 10.1039/d2ra06156b. eCollection 2022 Nov 22.
4
Synthesis and Functionalization Reactivity of Fe-Thiocarbonyl and Thiocarbyne Complexes.
Polyhedron. 2021 Nov 15;209. doi: 10.1016/j.poly.2021.115461. Epub 2021 Sep 4.
5
Electronic structure of iron dinitrogen complex [(TPB)FeN]: correlation to Mössbauer parameters.
RSC Adv. 2020 Feb 25;10(13):7948-7955. doi: 10.1039/c9ra10481j. eCollection 2020 Feb 18.
6
Tripodal PFe-N Complexes (X = B, Al, Ga): Effect of the Apical Atom on Bonding, Electronic Structure, and Catalytic N-to-NH Conversion.
Inorg Chem. 2021 Jan 18;60(2):1220-1227. doi: 10.1021/acs.inorgchem.0c03354. Epub 2021 Jan 7.
7
Relating N-H Bond Strengths to the Overpotential for Catalytic Nitrogen Fixation.
Eur J Inorg Chem. 2020 Apr 30;2020(15-16):1353-1357. doi: 10.1002/ejic.202000232. Epub 2020 Apr 9.
8
Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes.
Inorg Chem. 2020 Oct 19;59(20):14967-14982. doi: 10.1021/acs.inorgchem.0c01686. Epub 2020 Sep 29.
9
Catalytic N-to-NH (or -NH) Conversion by Well-Defined Molecular Coordination Complexes.
Chem Rev. 2020 Jun 24;120(12):5582-5636. doi: 10.1021/acs.chemrev.9b00638. Epub 2020 Apr 30.

本文引用的文献

1
Fe-mediated HER vs NRR: Exploring Factors that Contribute to Selectivity in P Fe(N) (E = B, Si, C) Catalyst Model Systems.
ACS Catal. 2018 Feb 2;8(2):1448-1455. doi: 10.1021/acscatal.7b03068. Epub 2018 Jan 3.
2
Effects of N Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex.
J Am Chem Soc. 2018 Jul 11;140(27):8586-8598. doi: 10.1021/jacs.8b04828. Epub 2018 Jun 29.
3
Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p K Effects and Demonstrating Electrocatalysis.
J Am Chem Soc. 2018 May 16;140(19):6122-6129. doi: 10.1021/jacs.8b02335. Epub 2018 May 2.
4
Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding.
J Phys Chem A. 2018 May 10;122(18):4530-4537. doi: 10.1021/acs.jpca.8b02089. Epub 2018 Apr 30.
5
A bound reaction intermediate sheds light on the mechanism of nitrogenase.
Science. 2018 Mar 30;359(6383):1484-1489. doi: 10.1126/science.aar2765.
6
Nitrogen Fixation via a Terminal Fe(IV) Nitride.
J Am Chem Soc. 2017 Nov 1;139(43):15312-15315. doi: 10.1021/jacs.7b09364. Epub 2017 Oct 19.
7
Catalytic N-to-NH Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET.
ACS Cent Sci. 2017 Mar 22;3(3):217-223. doi: 10.1021/acscentsci.7b00014. Epub 2017 Feb 14.
8
N-H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe-N and Fe-CN Reductions.
J Am Chem Soc. 2017 Mar 1;139(8):3161-3170. doi: 10.1021/jacs.6b12861. Epub 2017 Feb 17.
9
Redox Non-Innocent Behavior of a Terminal Iridium Hydrazido(2-) Triple Bond.
Angew Chem Int Ed Engl. 2016 Oct 10;55(42):13169-13173. doi: 10.1002/anie.201607648.
10
Structural and Spectroscopic Characterization of a High-Spin {FeNO}(6) Complex with an Iron(IV)-NO(-) Electronic Structure.
Angew Chem Int Ed Engl. 2016 Jun 1;55(23):6685-8. doi: 10.1002/anie.201601742. Epub 2016 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验