Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.
Department of Chemistry and Department of Biophysics , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States.
Inorg Chem. 2019 Mar 4;58(5):3535-3549. doi: 10.1021/acs.inorgchem.9b00133. Epub 2019 Feb 14.
The intermediacy of metal-NNH complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N) fixation. In this context, we have shown that triphosphine-supported Fe(N) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH) complexes over an array of charge and oxidation states. Upon exposure to further H/e equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N-H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe) complexes, which serve as spectroscopic models for their reactive protonated congeners. Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the "NNMe" moiety. Specifically, although two closed-shell configurations of the "NNR" ligand have been commonly considered in the literature-isodiazene and hydrazido(2-)-we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR] ligand coupled antiferromagnetically to the Fe center. This one-electron redox noninnocence resembles that of the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N fixation activity.
金属-NNH 配合物的中间体已被牵涉到几种过渡金属介导的氮 (N) 固定催化循环中。在这种情况下,我们已经表明,三膦支持的 Fe(N) 配合物可以在一系列电荷和氧化态下在远端 N 原子处被还原和质子化,生成 Fe(NNH) 配合物。在暴露于更多的 H/e 等价物后,这些物种要么继续沿着远端型 Chatt 途径进行,生成末端铁 (IV) 氮化物,要么遵循远端到交替途径,导致近端 N 原子上形成 N-H 键。为了理解这种分歧选择性的起源,本文我们合成并阐明了一系列 Fe(NNMe) 配合物的电子结构,它们作为其反应性质子化同系物的光谱模型。我们使用了一系列光谱技术,结合密度泛函理论和相关的从头计算,证明了“NNMe”部分的单电子氧化还原非中性。具体来说,尽管文献中通常认为“NNR”配体有两种闭壳层构型——异二氮烯和肼基 (2-),但我们提供的证据表明,在其还原形式下,目前的铁配合物最好用与 Fe 中心反铁磁耦合的开壳层[NNR]配体来描述。这种单电子氧化还原非中性类似于经典的非中性配体 NO,并且可能对 N 固定活性的选择性具有机制意义。