Suppr超能文献

非临床样本中与抑郁症状相关的功能性脑网络的动态变化。

The Dynamics of Functional Brain Networks Associated With Depressive Symptoms in a Nonclinical Sample.

机构信息

Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, Netherlands.

Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Front Neural Circuits. 2020 Sep 18;14:570583. doi: 10.3389/fncir.2020.570583. eCollection 2020.

Abstract

Brain function depends on the flexible and dynamic coordination of functional subsystems within distributed neural networks operating on multiple scales. Recent progress has been made in the characterization of functional connectivity (FC) at the whole-brain scale from a dynamic, rather than static, perspective, but its validity for cognitive sciences remains under debate. Here, we analyzed brain activity recorded with functional Magnetic Resonance Imaging from 71 healthy participants evaluated for depressive symptoms after a relationship breakup based on the conventional Major Depression Inventory (MDI). We compared both static and dynamic FC patterns between participants reporting high and low depressive symptoms. Between-group differences in static FC were estimated using a standard pipeline for network-based statistic (NBS). Additionally, FC was analyzed from a dynamic perspective by characterizing the occupancy, lifetime, and transition profiles of recurrent FC patterns. Recurrent FC patterns were defined by clustering the BOLD phase-locking patterns obtained using leading eigenvector dynamics analysis (LEiDA). NBS analysis revealed a brain subsystem exhibiting significantly lower within-subsystem correlation values in more depressed participants (high MDI). This subsystem predominantly comprised connections between regions of the default mode network (i.e., precuneus) and regions outside this network. On the other hand, LEiDA results showed that high MDI participants engaged more in a state connecting regions of the default mode, memory retrieval, and frontoparietal network (p-FDR = 0.012); and less in a state connecting mostly the visual and dorsal attention systems (p-FDR = 0.004). Although both our analyses on static and dynamic FC implicate the role of the precuneus in depressive symptoms, only including the temporal evolution of BOLD FC helped to disentangle over time the distinct configurations in which this region plays a role. This finding further indicates that a holistic understanding of brain function can only be gleaned if the temporal dynamics of FC is included.

摘要

大脑功能依赖于分布于神经网络中的功能子系统的灵活和动态协调,这些子系统在多个尺度上运作。最近在从动态而非静态的角度来描述全脑功能连接(FC)方面取得了进展,但它对认知科学的有效性仍存在争议。在这里,我们根据传统的主要抑郁量表(MDI),分析了 71 名健康参与者在分手后评估抑郁症状时的功能磁共振成像记录的大脑活动。我们比较了报告高抑郁症状和低抑郁症状的参与者的静态和动态 FC 模式。使用基于网络的统计(NBS)的标准流水线来估计组间的静态 FC 差异。此外,通过描述反复出现的 FC 模式的占据、寿命和转换分布,从动态角度分析了 FC。反复出现的 FC 模式是通过聚类使用主导特征向量动力学分析(LEiDA)获得的 BOLD 锁相模式来定义的。NBS 分析显示,在更抑郁的参与者中,一个大脑子系统表现出显著较低的内部子系统相关值(高 MDI)。该子系统主要包括默认模式网络(即楔前叶)和该网络之外的区域之间的连接。另一方面,LEiDA 结果显示,高 MDI 参与者更多地参与连接默认模式、记忆检索和额顶网络的状态(p-FDR = 0.012);较少地参与连接主要是视觉和背侧注意系统的状态(p-FDR = 0.004)。尽管我们对静态和动态 FC 的分析都暗示了楔前叶在抑郁症状中的作用,但只有包括 BOLD FC 的时间演化,才能帮助随着时间的推移解开该区域发挥作用的不同配置。这一发现进一步表明,如果包括 FC 的时间动态,那么只能获得对大脑功能的整体理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/7530893/6faf5850a455/fncir-14-570583-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验