文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态脑波动在各痴呆亚型中均优于连接测量,并反映病理生理特征:一项多中心研究。

Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study.

机构信息

Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.

Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina.

出版信息

Neuroimage. 2021 Jan 15;225:117522. doi: 10.1016/j.neuroimage.2020.117522. Epub 2020 Nov 2.


DOI:10.1016/j.neuroimage.2020.117522
PMID:33144220
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7832160/
Abstract

From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant frontotemporal dementia (bvFTD) patients, Alzheimer's disease (AD) patients, and healthy controls. We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four independent datasets with different MR scanners and recording parameters. The machine learning classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.

摘要

从分子机制到全球大脑网络,非典型波动是神经退行性变的标志。然而,传统的静息态 fMRI 研究倾向于采用静态和平均连通性方法,这些方法忽略了神经退行性变引发的波动动态,因此得出的结果不一致。本研究采用基于数据驱动的机器学习管道,对 300 名参与者的 rs-fMRI 数据进行动态连通性波动分析 (DCFA),这些参与者分为三组:行为变异额颞叶痴呆 (bvFTD) 患者、阿尔茨海默病 (AD) 患者和健康对照者。我们考虑了组合和个体静息态网络 (RSN) 中的非线性振荡模式,即:突显网络 (SN),主要受 bvFTD 影响;默认模式网络 (DMN),主要受 AD 影响;执行网络 (EN),在两种情况下均部分受损;运动网络 (MN);和视觉网络 (VN)。这些 RSN 被用作使用最近的稳健机器学习方法 (一种经过贝叶斯超参数调整的梯度提升机 (GBM) 算法) 对痴呆症进行分类的特征,在具有不同 MRI 扫描仪和记录参数的四个独立数据集上进行。机器学习分类准确性分析揭示了 RSN 破坏的系统和独特的定制结构。分类准确性排名显示,对 bvFTD 影响最大的网络是 SN+EN 网络对 (平均准确性=86.43%,AUC=0.91,灵敏度=86.45%,特异性=87.54%);对于 AD,DMN+EN 网络对 (平均准确性=86.63%,AUC=0.89,灵敏度=88.37%,特异性=84.62%);对于 bvFTD 与 AD 的分类,DMN+SN 网络对 (平均准确性=82.67%,AUC=0.86,灵敏度=81.27%,特异性=83.01%)。此外,DFCA 分类系统优于传统的连通性方法 (包括静态和线性动态连通性)。我们的研究结果表明,非线性动力学波动超过了两种传统的种子功能连通性方法,并为神经退行性疾病 (AD 和 bvFTD) 中的全局大脑网络提供了病理生理学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/22f11b4a7bb2/nihms-1659145-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/f54edc477aba/nihms-1659145-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/a0fd7aa66feb/nihms-1659145-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/b68b257e247f/nihms-1659145-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/22f11b4a7bb2/nihms-1659145-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/f54edc477aba/nihms-1659145-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/a0fd7aa66feb/nihms-1659145-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/b68b257e247f/nihms-1659145-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a0/7832160/22f11b4a7bb2/nihms-1659145-f0004.jpg

相似文献

[1]
Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study.

Neuroimage. 2021-1-15

[2]
A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

J Alzheimers Dis. 2017

[3]
Plasma Neurofilament Light Relates to Divergent Default and Salience Network Connectivity in Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia.

J Alzheimers Dis. 2024

[4]
Functional network connectivity in the behavioral variant of frontotemporal dementia.

Cortex. 2012-10-24

[5]
Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging.

J Alzheimers Dis. 2018

[6]
Weighted Symbolic Dependence Metric (wSDM) for fMRI resting-state connectivity: A multicentric validation for frontotemporal dementia.

Sci Rep. 2018-7-25

[7]
Integrity of Neurocognitive Networks in Dementing Disorders as Measured with Simultaneous PET/Functional MRI.

J Nucl Med. 2020-9

[8]
Brain network modulation in Alzheimer's and frontotemporal dementia with transcranial electrical stimulation.

Neurobiol Aging. 2022-3

[9]
Source space connectomics of neurodegeneration: One-metric approach does not fit all.

Neurobiol Dis. 2023-4

[10]
Multiparametric MRI to distinguish early onset Alzheimer's disease and behavioural variant of frontotemporal dementia.

Neuroimage Clin. 2017-5-25

引用本文的文献

[1]
A comprehensive survey of complex brain network representation.

Meta Radiol. 2023-11

[2]
Aberrant functional connectivity between the retrosplenial cortex and hippocampal subregions in amnestic mild cognitive impairment and Alzheimer's disease.

Brain Commun. 2024-12-31

[3]
Disruption of the gut microbiota-inflammation-brain axis in unmedicated bipolar disorder II depression.

Transl Psychiatry. 2024-12-18

[4]
Brain network dynamics in patients with single- and multiple-domain amnestic mild cognitive impairment.

Alzheimers Dement. 2024-11

[5]
Educational disparities in brain health and dementia across Latin America and the United States.

Alzheimers Dement. 2024-9

[6]
Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling.

Alzheimers Dement. 2024-5

[7]
A synergetic turn in cognitive neuroscience of brain diseases.

Trends Cogn Sci. 2024-4

[8]
Genetic basis of anatomical asymmetry and aberrant dynamic functional networks in Alzheimer's disease.

Brain Commun. 2023-12-3

[9]
The BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds.

Sci Data. 2023-12-9

[10]
Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI.

Hum Brain Mapp. 2024-1

本文引用的文献

[1]
Dementia in Latin America: Paving the way toward a regional action plan.

Alzheimers Dement. 2021-2

[2]
COVID-19 in older people with cognitive impairment in Latin America.

Lancet Neurol. 2020-9

[3]
Tapping into Multi-Faceted Human Behavior and Psychopathology Using fMRI Brain Dynamics.

Trends Neurosci. 2020-9

[4]
Modeling regional changes in dynamic stability during sleep and wakefulness.

Neuroimage. 2020-7-15

[5]
Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach.

Neuroimage. 2020-3

[6]
A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data.

Diagnostics (Basel). 2019-11-7

[7]
Explicit and implicit monitoring in neurodegeneration and stroke.

Sci Rep. 2019-10-1

[8]
Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging.

Alzheimers Dement (Amst). 2019-8-28

[9]
Resting State Dynamic Functional Connectivity in Neurodegenerative Conditions: A Review of Magnetic Resonance Imaging Findings.

Front Neurosci. 2019-6-20

[10]
Resting brain dynamics at different timescales capture distinct aspects of human behavior.

Nat Commun. 2019-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索