Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.
Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina.
Neuroimage. 2021 Jan 15;225:117522. doi: 10.1016/j.neuroimage.2020.117522. Epub 2020 Nov 2.
From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant frontotemporal dementia (bvFTD) patients, Alzheimer's disease (AD) patients, and healthy controls. We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four independent datasets with different MR scanners and recording parameters. The machine learning classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.
从分子机制到全球大脑网络,非典型波动是神经退行性变的标志。然而,传统的静息态 fMRI 研究倾向于采用静态和平均连通性方法,这些方法忽略了神经退行性变引发的波动动态,因此得出的结果不一致。本研究采用基于数据驱动的机器学习管道,对 300 名参与者的 rs-fMRI 数据进行动态连通性波动分析 (DCFA),这些参与者分为三组:行为变异额颞叶痴呆 (bvFTD) 患者、阿尔茨海默病 (AD) 患者和健康对照者。我们考虑了组合和个体静息态网络 (RSN) 中的非线性振荡模式,即:突显网络 (SN),主要受 bvFTD 影响;默认模式网络 (DMN),主要受 AD 影响;执行网络 (EN),在两种情况下均部分受损;运动网络 (MN);和视觉网络 (VN)。这些 RSN 被用作使用最近的稳健机器学习方法 (一种经过贝叶斯超参数调整的梯度提升机 (GBM) 算法) 对痴呆症进行分类的特征,在具有不同 MRI 扫描仪和记录参数的四个独立数据集上进行。机器学习分类准确性分析揭示了 RSN 破坏的系统和独特的定制结构。分类准确性排名显示,对 bvFTD 影响最大的网络是 SN+EN 网络对 (平均准确性=86.43%,AUC=0.91,灵敏度=86.45%,特异性=87.54%);对于 AD,DMN+EN 网络对 (平均准确性=86.63%,AUC=0.89,灵敏度=88.37%,特异性=84.62%);对于 bvFTD 与 AD 的分类,DMN+SN 网络对 (平均准确性=82.67%,AUC=0.86,灵敏度=81.27%,特异性=83.01%)。此外,DFCA 分类系统优于传统的连通性方法 (包括静态和线性动态连通性)。我们的研究结果表明,非线性动力学波动超过了两种传统的种子功能连通性方法,并为神经退行性疾病 (AD 和 bvFTD) 中的全局大脑网络提供了病理生理学特征。
Meta Radiol. 2023-11
Transl Psychiatry. 2024-12-18
Alzheimers Dement. 2024-11
Alzheimers Dement. 2024-9
Trends Cogn Sci. 2024-4
Alzheimers Dement. 2021-2
Lancet Neurol. 2020-9
Trends Neurosci. 2020-9
Neuroimage. 2020-7-15
Diagnostics (Basel). 2019-11-7
Sci Rep. 2019-10-1
Alzheimers Dement (Amst). 2019-8-28