Suppr超能文献

相似文献

1
Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants.
Addit Manuf. 2020 Dec;36. doi: 10.1016/j.addma.2020.101553. Epub 2020 Aug 24.
2
Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation.
Acta Biomater. 2018 Jan 15;66:118-128. doi: 10.1016/j.actbio.2017.11.022. Epub 2017 Nov 8.
3
Titanium-Silicon on CoCr Alloy for Load-Bearing Implants Using Directed Energy Deposition-Based Additive Manufacturing.
ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51263-51272. doi: 10.1021/acsami.0c15279. Epub 2020 Nov 9.
5
Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants.
J Mech Behav Biomed Mater. 2016 Apr;57:280-8. doi: 10.1016/j.jmbbm.2015.11.022. Epub 2015 Dec 4.
8
Understanding wear behavior of 3D-Printed calcium phosphate-reinforced CoCrMo in biologically relevant media.
J Mech Behav Biomed Mater. 2021 Aug;120:104564. doi: 10.1016/j.jmbbm.2021.104564. Epub 2021 Apr 29.
9
The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles.
Mutat Res. 2010 Mar 29;697(1-2):1-9. doi: 10.1016/j.mrgentox.2010.01.012. Epub 2010 Feb 4.
10
Additively Manufactured Ti6Al4V-Si-Hydroxyapatite composites for articulating surfaces of load-bearing implants.
Addit Manuf. 2020 Aug;34. doi: 10.1016/j.addma.2020.101241. Epub 2020 Apr 23.

引用本文的文献

2
Improving Biocompatibility for Next Generation of Metallic Implants.
Prog Mater Sci. 2023 Mar;133. doi: 10.1016/j.pmatsci.2022.101053. Epub 2022 Nov 29.

本文引用的文献

1
Characterization of Co-Cr-Mo alloys after a thermal treatment for high wear resistance.
Mater Sci Eng C Mater Biol Appl. 2012 Oct 1;32(7):1868-1877. doi: 10.1016/j.msec.2012.05.003. Epub 2012 May 11.
2
Can Cobalt(II) and Chromium(III) Ions Released from Joint Prostheses Influence the Friction Coefficient?
ACS Biomater Sci Eng. 2015 Aug 10;1(8):617-620. doi: 10.1021/acsbiomaterials.5b00183. Epub 2015 Jul 30.
3
Additively Manufactured Ti6Al4V-Si-Hydroxyapatite composites for articulating surfaces of load-bearing implants.
Addit Manuf. 2020 Aug;34. doi: 10.1016/j.addma.2020.101241. Epub 2020 Apr 23.
5
Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation.
Acta Biomater. 2018 Jan 15;66:118-128. doi: 10.1016/j.actbio.2017.11.022. Epub 2017 Nov 8.
7
In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.
J Mech Behav Biomed Mater. 2014 Jan;29:259-71. doi: 10.1016/j.jmbbm.2013.09.006. Epub 2013 Sep 18.
8
Effect of tribolayer formation on corrosion of CoCrMo alloys investigated using scanning electrochemical microscopy.
Anal Chem. 2013 Aug 6;85(15):7159-66. doi: 10.1021/ac400823q. Epub 2013 Jul 12.
9
Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: nitrogen-enhanced nanostructural evolution and its effect on phase stability.
Acta Biomater. 2013 Apr;9(4):6259-67. doi: 10.1016/j.actbio.2012.12.013. Epub 2012 Dec 16.
10
New insights into hard phases of CoCrMo metal-on-metal hip replacements.
J Mech Behav Biomed Mater. 2012 Aug;12:39-49. doi: 10.1016/j.jmbbm.2012.03.013. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验